

SINGLE MOLECULE MICROSCOPY

Fluorescence microscopy

Single-molecule fluorescence microscopy

Information on distributions and time trajectories that would otherwise be hidden

Identify and compare sub-populations

Probe biological meconecomolacity and provide informations on their structure and function

In vitro and in vivo

PSF and image resolution

 $2\lambda/NA^2$

Image resolution

Axial resolution = $2\lambda/NA^2 \sim 500$ nm

Overcoming the diffraction limit

Fluorescence Imaging with One Nanometer Accuracy FIONA

Fluorescence Imaging with One Nanometer Accuracy FIONA

High quantum yield fluo probes

High NA aperture objectives (1.45)

High sensitivity CCD cameras such as EMCCD

 $= \frac{1}{2} \sum_{\mu} \frac{1}{2} \sum_{\mu$

Thompson et al. Biophys.J. 2002

75.4 ±1.3 nm

1300

 $N \approx 10^4$ photons $\sigma_{\mu} \approx 1,5 \,\mathrm{nm}$

High quantum yield fluo probes

High NA aperture objectives (1.45)

High sensitivity CCD cameras such as EMCCD

TOTAL INTERNAL REFLECTION MICROSCOPY (proximity to the membrane)

b

100 nm depth in the sample

Small volume excited

High S/N

INCLINED ILLUMINATION b | HILO (Highly inclined and Laminated Optical sheet)

THE ILLUMINATION BEAM ALWAYS PASSES THROUGH THE CENTER OF THE SPECIMEN PLANE ALLOWING OPTICAL SECTIONING

8 FOLD HIGHER SIGNAL/BACKGROUND COMPARED TO TRADITIONAL WIDEFIELD MICROSOCPY

Application in vitro: myosin V walks hand over hand

Singel Molecule FRET (Forster Resonance Energy Transfer)

Distanze tipiche tra 30 e 80 Å

Probing conformational changes and displacements

Super-resolution microscopy

Lucia Gardini 09/04/2019 LENS

Single molecule localization microscopy: SUPER-RESOLUTION MICROSCOPY

NOBEL PRIZE IN CHEMISTRY 2014

Photo: Matt Staley/HHMI Eric Betzig Prize share: 1/3

Photo: Wikimedia Commons, CC-BY-SA-3.0 Stefan W. Hell Prize share: 1/3

Photo: K. Lowder via Wikimedia Commons, CC BY-SA-3.0 William E. Moerner Prize share: 1/3

Xiaowei Zhuang BREACKTHROUGH PRIZE 2019

STORM - Photo-switchable Probes

Reporter emission (nm)

Direct STORM

Dye		Sensitivity ^a	
Blue-absorbing	Atto 488	+	
	Alexa Fluor 488	+	
	Atto 520	+	
	Fluorescein	-	and 1
	FITC	-	
	Cy2	-	and the
Yellow-absorbing	Cy3B	+	
	Alexa Fluor 568	+	
	TAMRA	-	488 nm
	Cy3	-	
	Cy3.5	+	
	Atto 565	+	405 nm
Red-absorbing	Alexa Fluor 647	++	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Cy5	++	(fluoroccont)
	Atto 647	+	(indirescent)
	Atto 647N	+	
	Dyomics 654	++	
	Atto 655	+	
	Atto 680	+	
	Cy5.5	++	
NIR-absorbing	Dylight 750	++	
	Cy7	++	
	Alexa Fluor 750	++	
	Atto 740	+	
	Alexa Fluor 790	++	
	IRDye 800CW	++	

Dempsey G.T. et al Nat. Methods 2011

5 µm

B-SC-1 cell, Microtubules stained with anti-β tubulin Cy3 / Alexa 647 secondary antibody

5 µm

Bates et al, *Science* **317**, 1749 – 1753 (2007)

Bates et al, Science 317, 1749 - 1753 (2007)

3D via astigmatic detection

nature methods

Brief Communication | Published: 08 January 2012

Dual-objective STORM reveals threedimensional filament organization in the actin cytoskeleton

Ke Xu, Hazen P Babcock & Xiaowei Zhuang 🖾

Nature Methods 9, 185–188 (2012) Download Citation 4

10 nm lateral 20 nm axial

