

THESEUS Terahertz sources for Humans and Environmental SEcUrity

ISTITUTO ITALIANO **DI TECNOLOGIA**

Nanomaterials and microstructures for THz devices

Alessandro Tredicucci

Dipartimento di Fisica E. Fermi Università di Pisa

THz: what and why

1 THz = 300cm⁻¹ = 4.1meV = 300μm Frequency Energy (cm⁻¹) Energy (meV) Wavelength

Applications

- Information and communication technology Wireless communications
- Space Science
- Environment
 Atmospheric sensing
- Medicine
 Imaging of biological tissue
- Security Controls
- Defense

Chemical agent detection Transportation

 Material processing Tomography

Improve the functionality of the systems to address application requirements

- Compact and efficient **THz sources**:
 - High temperature, high power, wide tunability, ultra-narrow
 - Regular and low divergent beam profiles
- High speed, high dynamic range THz detectors

National Enterprise for nanoScience and nanoTechnology

The unipolar semiconductor laser

"materials by design":

band structure engineering and molecular beam epitaxy (MBE)

population inversion, matrix elements, scattering times, and transport are <u>designed</u> for optimum performance

 1971: amplification from intersubband transitions is first postulated by R. F. Kazarinov and R. A. Suris Sov. Phys. Semicond. 5, 207 (loffe)

1994: QC-laser is first experimentally demonstrated by J.
 Faist et al. Science 264, 553 (Bell Labs)

National Enterprise for nanoScience and nanoTechnology

THz QCLs

Excellent performance in terms of:

- high emitted power (> 1 W in pulse mode, 0.23 W in CW)
- stable single mode or broadband operation
- large frequency tunability (up to 0.65 THz)
- low divergence (a few degrees) and good beam quality of emission

C. A. Curwen et al., Nat. Photonics, 13(12), 855-859 (2019)

However, there are still open challenges:

Room temperature operation

actual record 250 K, Khalatpour et al., Nat. Photonics 15(1), 16-20, (2021)

TE-cooled

L. Bosco et al., Appl. Phys. Lett. 115, 010601 (2019) Active region design optimization

THZ QCLs waveguide

Use a microstrip geometry

broadband, high mirror reflectivity, good injection

UT REAL FOR THE PARTY OF THE PA

THz QCL microcavities

The whispering gallery resonator

The dipole-antenna microcavity

The dipole-antenna microcavity

Continuous wave laser operation of a dipole-antenna terahertz microresonator, L. Masini et al., Light: Science & Applications, 6, e17054 (2017)

Dual-injection scheme

M. Brandstetter, et al.," Nat. Commun. 5, 4034-4037 (201

Fabrication process

1. EBL of markers

2. SiO_2 sputtering

3. Aligned EBL + SiO₂ etching

4. Aligned EBL + metal evaporation

-1

min

max ■ 1

0

Laser operation

6.4 mA threshold current, 320 μW (max),140 mW/A power efficiency single mode CW vertical emission at 3.3 THz (lateral to vertical emitted power ratio η~20)

A. Ottomaniello et al., *Optics Express*, 2021, <u>https://doi.org/10.1364/OE.430742</u>

Varying the current in Disk A while keeping fixed at 3.4 mA that of Disk B:

Laser operation control by spatially controlling gain and loss A. Ottomaniello et al., *Optics Express*, 2021, <u>https://doi.org/10.1364/OE.430742</u>

Varying the current in Disk A while keeping fixed at 3.4 mA that of Disk B:

High enhancement of the out-coupling performance by adding the suspended bridge:

A. Ottomaniello et al., *Optics Express*, 2021, https://doi.org/10.1364/OE.430742

Perspectives

We developed different designs of microcavity lasers:

Ottomaniello et al., Optics Express, 2021 https://doi.org/10.1364/OE.430742.

65

and parallelized microcavity lasers

Multi-wavelength and with far-field tunability

Graphene plasmons as cavity modes

Propagating EM waves coupled to electron oscillations inside a graphene sheet

Plasmons confine light in **strongly subwavelength volumes**:

Vertical emission in graphene microdisk QCLs

Coupled disk geometry with graphene waveguide

Ultra-small devices

- High Purcell
 enhancement factors
- Low power consumption (Peltier)
- Large plasmon wavector could enhance gain
- Reduce cascade
 inhomogeneities

This projectThe NATO Science for Peaceis supported by:and Security Programme

Opto-mechanical bolometric detection

An alternative approach:

Suspended SiN membrane vibration is measured by self-mixing The resonant frequency decreases with temperature (thermal expansion relaxes tensile stress) It can be applied to the detection of any radiation that release energy – THz as well!

Η

Laser power (mW)

L. Vicarelli, et al., arXiv:2107.121270

THz Detection:

For a faster and better resolved graphene membrane detection we implemented a self-mixing scheme.

Sensitivity below to 1 nm resolution

0.15THz detected!

The response depends on the cooling and heating dynamics of the membrane and on the quality factor of the membrane (the lower, the better!) But still requires vacuum for operation

NEP 100 pW Hz^{-1/2}

Increasing piezo driving voltage will decrease the NEP

Adhesion: solved! Leakage solved!

Graphene transfer protocol allows the fabrication of membrane able to withstand 10⁵ Pa of pressure difference Graphene cells under show reproducible deformation when exposed to thermal expansion cycles

Courtesy of M. Lazzarino, CNR-IOM

 \square

<u>ิ</u>คา ioเท

THz detection 1

Time (sec)

GGG cells are illuminated from a globar source through a 5THz band pass filter, The membrane deflection is monitored with a dark field optical microscopy The response time is of the order of a second.

Courtesy of M. Lazzarino, CNR-IOM

Strong coupling in the few-electron regime

Quantum light sources

Few-electrons systems are interesting because of the strong quantum nonlinear effects

Y. Todorov et al, Phys Rev. X 4, 041031 (2014)

Challenging results have been achieved in systems with cumbersome fabrication or complex experiments

Graphene Plasmon launched by ridges

Resonant QW and GPs: dependence on

Number of	elect	rons	involved
=		2	$\sim 10^2$

Increasing the confinement of light

I. Epstein et al, Science 368, 1219-1223 (2020)

Placing graphene close to a metallic surface: Acoustic Graphene Plasmons (AGPs)

AGPs confine light much better than regular GPs

 $\sim \frac{0}{300} \sim 30 - 50 \, nm \Rightarrow ----- \sim$

Recently measured: far-field excitation of AGPs below metallic nanocubes randomly deposited on graphene-hBN heterostructure

Resonant QW: dependence on

GP mode confined below the cube:

Number of e	elect	rons	involved
=	•	2	~ 10

Conclusion and future experiment

The system is appealing because

Strong coupling even in the few-electrons regime

Tunable thanks to graphene

Easy to fabricate, simple far field experiment

Fabrication optimized: system will be measured soon

Dielectric may offer poor transconductance

Ionic liquids should have better performances

Acknowledgements

A. Ottomaniello

V. Mattoli

F. Bianco

CNRNANO

A. Pitanti

R. Bertini

G. Conte

THEJEUJ

Miniaturized Terahertz sources for Humans and **Environmental SEcUrity**

L. Vicarelli

N. Melchioni

Thank you all for the attention!

This activity is supported by:

The NATO Science for Peace and Security Programme

