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1 Quantum Mechanics

Marco Zaro, 31-10-2018 2
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Figure 1: A cavity between two coaxial cylinders.

Find the energetic levels of a particle living in a cavity between two coaxial cylinders of
height h and radii a, A (a < A), as depicted in Fig. 1. Consider the following cases:

i) (1 point) h≫ A (both cylinders extend indefinitely along their axis);

ii) (3 points) The cavity is closed by two lids on the top and bottom ends;

iii) (6 points) A uniform magnetic field B⃗, directed along the cylinder axis, is present only
inside the smallest cylinder, but is zero anywhere else (including in the cavity).

For the radial part, it is enough to obtain the equation(s) whose solutions give the energy levels.

Hints:

i) The gradient, curl and Laplacian in cylindrical coordinates are

∇⃗ =
∂

∂z
ẑ +

∂

∂r
r̂ +

1

r

∂

∂ϕ
ϕ̂ , (1)

∇⃗ × A⃗ =
1

r

(︃
∂(rAϕ)

∂r
− ∂Ar

∂ϕ

)︃
ẑ +

(︃
1

r

∂Az

∂ϕ
− ∂Aϕ

∂z

)︃
r̂ +

(︃
∂Ar

∂z
− ∂Az

∂r

)︃
ϕ̂ , (2)

∇2 =
∂2

∂z2
+

1

r

∂

∂r

(︃
r
∂

∂r

)︃
+

1

r2
∂2

∂ϕ2
. (3)

ii) The Bessel functions are the solutions of the differential equation

x2y′′ + xy′ + (x2 − α2)y = 0 α > 0 . (4)

The Bessel functions of the first kind, y = Jα(x), are regular at x→ 0, while those of the
second kind, y = Yα(x), diverge in the same limit. In Fig. 2 some of the Bessel functions
are plotted.
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Figure 2: Bessel functions of the first and second kind.

2



PLANCKS 2023 Milan, Italy Marco Zaro, INFN, UniMi

Solutions

(i) and (ii) In the region between the two cylinders, the Hamiltonian reduces to the free-
particle case for i) and ii) (we will discuss the boundary conditions in due time). The Hamil-
tonian, inside the cavity

H = −ℏ2
∇2

2m
. (5)

The first step, is use write the Laplacian operator in cylindrical coordinates (z, r, ϕ), using hint
i). We note that z is completely separated. Thus, in order to find the eigenfunctions of the
Hamiltonian, we assume for them a factorised form

ΨE(z, r, ϕ) = ζEz(z)ψErϕ(r, ϕ) , (6)

with the corresponding eigenvalue
E = Ez + Erϕ . (7)

Cases i) and ii) differ only in the z part:

• for case i), we have a free-particle problem, where eigenfunctions are plane waves

ζEz(z) = ζk(z) = Nk,z e
ikx , (8)

and

Ez = Ek
z =

ℏ2k2

2m
; (9)

• for case ii), we instead have a one-dimensional infinite-well problem, with the boundary
conditions ζEz(0) = ζEz(h) = 0. The solutions are

ζEz(z) = ζnz(z) = Nnz ,z sin
2πnzx

h
, (10)

and the energy eigenvalues

Ez = Enz
z =

ℏ2n2
zπ

2

2mh2
. (11)

Let us now turn to the less trivial r, ϕ part. In this case, the equation for the eigenstates
of the Hamiltonian reads

− ℏ2

2m

[︃
1

r

∂

∂r

(︃
r
∂

∂r

)︃
+

1

r2
∂2

∂ϕ2

]︃
ψErϕ(r, ϕ)− Erϕψ

Erϕ(r, ϕ) = 0 . (12)

The part involving derivatives w.r.t. ϕ can be written in term of the (only component of the)
angular momentum L:

L = −iℏ ∂2

∂ϕ2
(13)

Rotational invariance allows us to replace the operator L with its eigenvalue ℏl. We rewrite
Eq. 12 as [︃

1

r

∂

∂r

(︃
r
∂

∂r

)︃
− 1

r2
l2 +

2mErl

ℏ2

]︃
ρErl(r) = 0 , (14)
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where, after diagonalising the angular momentum, we have factored out the ϕ-dependent part
of the eigenfunction as

ψErl(r, ϕ) =
1√
2π
eilϕρErl(r) , (15)

and we have re-labeled the energy eigenvalue exposing its dependence on l.

For the radial part, we multiply both sides of Eq. 14 by r2 and let the derivatives act, thus
obtaining (︃

r2
∂2

∂r2
+ r

∂

∂r
+

2mErl

ℏ2
r2 − l2

)︃
ρErl(r) = 0 . (16)

We almost recognize the differential equation satisfied by the Bessel functions (hint ii)), which
we can obtain by introducing the variable

u(r) =

√
2mErl

ℏ
r . (17)

We have indeed (︃
u2

∂2

∂u2
+ u

∂

∂u
+ u2 − l2

)︃
ρErl(u) = 0 . (18)

Therefore, we can obtain the solutions, which we can write as linear combinations of the Bessel
functions of first and second kind:

ρErl(u) = NJ
l,zJl(u) +NY

l,zYl(u) . (19)

Note that, since the cavity does not extend in the region r → 0, we must keep both kind of
Bessel functions. In order to find the allowed energy levels, we must impose the boundary
conditions on the radial part. Wavefunctions are required to vanish at th edges of the cavity,
thus one must have

ρErl(r = a) = ρErl(r = A) = 0 . (20)

We therefore have the following two relations

NJ
l,zJl(u(a)) +NY

l,zYl(u(a)) = 0 , (21)

NJ
l,zJl(u(A)) +NY

l,zYl(u(A)) = 0 , (22)

leading to the (normalisation-constant independent) equation

Jl(u(a))

Jl(u(A))
=
Yl(u(a))

Yl(u(A))
, (23)

whose solutions are the allowed energy values.

(iii) The subtle part here is the role of the magnetic field which, despite being non-zero
only outside the cavity, it affects the energy eigenfunctions. The Hamiltonian in the presence
of a magnetic field can be obtained from the standard one by applying the minimal-coupling
prescription, i.e. by replacing

p⃗→ p⃗− eA⃗

c
, (24)
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A⃗ being the electromagnetic vector potential. We must thus derive the vector potential, which
is related to the magnetic field as

B⃗ = ∇⃗ × A⃗ . (25)

In our case, B⃗ = Bz ẑ if r < a, else B⃗ = 0.
The curl operator, expressed in cylindrical coordinates, given by hint i), reads

∇⃗ × A⃗ =
1

r

(︃
∂(rAϕ)

∂r
− ∂Ar

∂ϕ

)︃
ẑ +

(︃
1

r

∂Az

∂ϕ
− ∂Aϕ

∂z

)︃
r̂ +

(︃
∂Ar

∂z
− ∂Az

∂r

)︃
ϕ̂ (26)

The symmetries of the problem (ϕ-rotational and z-traslational invariance), imply ∂zAi =
∂ϕAi = 0. Eq. 25 thus become:

1

r

∂(rAϕ)

∂r
= Bz for r < a , (27)

1

r

∂(rAϕ)

∂r
= 0 for r > a , (28)

∂Az

∂r
= 0 . (29)

The solutions are

Aϕ =
Bzr

2
+
c

r
for r < a , (30)

Aϕ =
c′

r
for r > a , (31)

Az = c′′ . (32)

If we require that Aϕ is regular at r = 0 then we must set c = 0; continuity at r = a

implies c′ = Bza2

2r
. Thus, neglecting other constant terms which give only phase-shifts to the

wavefunctions, the vector potential inside the cavity is

A⃗ =
Bza

2

2r
ϕ̂ . (33)

(The same results for Aϕ can be obtained with Stoke’s theorem.)
We now apply the minimal-coupling prescription Eq. 24. Only the ϕ component changes, as

pϕ =
1

r

(︃
−iℏ ∂

∂ϕ
− Bza

2e

2c

)︃
. (34)

Thus, the ϕ dependent part of the wavefunction must now be an eigenfunction of the operator

L̃ = −iℏ ∂

∂ϕ
− Bza

2e

2c
, (35)

i.e. it must satisfy the differential equation(︃
−iℏ ∂

∂ϕ
− Bza

2e

2c

)︃
φ(ϕ) = ℏl̃φ(ϕ) , (36)
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with the periodicity condition
φ(0) = φ(2π) . (37)

The soluton is trivial

φ(ϕ) =
1√
2π

exp

[︃
i

ℏ
ϕ

(︃
ℏl̃ +

Bza
2e

2c

)︃]︃
, (38)

but the periodicity condition now requires that

l̃ +
Bza

2e

2ℏc
∈ N . (39)

The energy levels are affected because the radial part of the wavefunction must now satisfy[︃
1

r

∂

∂r

(︃
r
∂

∂r

)︃
− 1

r2
l̃2 +

2mErl̃

ℏ2

]︃
ρErl̃(r) = 0 , (40)

in which, at variance with Eq. 14, l̃ is not an integer anymore, because of the term proportional
to the magnetic field.

A comment is worth here: what we have derived with sweat and pain should somehow
surprise us. Even if there is no magnetic field in the cavity, i.e. the particle does not experience
any force, still the presence of the magnetic field inside the inner region (not accessible by the
particle) has an effect on the energy levels. Otherwise said, contrary to the conclusions of
classical mechanics, there exist effects of potentials on charged particles, even in the region
where all the fields (and therefore the forces on the particles) vanish. This is the Aharonov-
Bohm effect (Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the
quantum theory,” Phys. Rev. 115 (1959), 485-491), which has been measured experimentally.
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2 Thermodynamics

Let’s consider a spherical soap bubble containing n moles of a perfect gas, whose conductive
surface has a charge q. The bubble is at atmospheric conditions: let T0 be the temperature
and p0 the pressure, while γ0 is the constant of surface tension of the uncharged water and
soap layer.

i) (2 points) Show that the constant of surface tension depends on the charge;

ii) (4 points) Determine the equilibrium conditions for the charged bubble. Verify that
there is always one and only one value that satisfies these conditions;

iii) (4 points) Study the stability of the equilibrium.
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Solutions

(i) We can compute the differential of the free energy for the membrane of the bubble:

dFb = −sbdT + γdΣ +
q

C
dq ,

where C = 4πϵ0r is the electric capacitance of the bubble, r is its radius and Σ its surface
density, which, since there are two interfaces, can be written as Σ = 8πr2. We can obtain from
Maxwell relations:

∂γ

∂q

⃓⃓⃓⃓
Σ,T

= −∂(q/C)
∂Σ

⃓⃓⃓⃓
q,T

,

which implies
∂γ

∂q

⃓⃓⃓⃓
T

= − q

64π2ϵ0r3
.

By integrating this equation we get

γ(T, r, q) = γ0(T )−
q2

128π2ϵ0r3
.

(ii) At equilibrium, the ”bubble” system (gas and film) is at the thermostat temperature
T0. To find the equilibrium conditions, the minimum of the potential G̃0 is sought, with respect
to the unique internal variable V (or the radius r).

G̃0 = F (T0, V, q) + p0V .

Let us call pg the pressure of the gas inside the bubble. At constant q and T dF reads:

dF = −pgdV + γdΣ .

Hence
∂G̃0

∂r

⃓⃓⃓⃓
T,q

= 4πr2
[︃
(p0 − pg) +

4r0
r

− q2

32π2ϵ0r4

]︃
.

Thus, we can obtain the equilibrium condition:

pg − p0 =
4γ0(T0)

re
− q2

32π2ϵ0r4e
=

4γ0(T0)

re
− σ2

2ϵ0
,

where σ = q
4πr2

is the surface charge density. It is possible to notice that the term σ2

2ϵ0
is equal

to the electrostatic pressure pel, so we can write

pg − p0 =
4γ0(T0)

re
− pel .

The right hand side of this equation could be negative a priori, which would mean that the
pressure inside the bubble is higher than the pressure outside. However, this would not be an
acceptable result, since we assumed the bubble to be spherical, and thus with

4γ0(T0)

re
− pel = 4γ > 0 .
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After having imposed γ > 0, we can obtain the equilibrium condition:

3nRT0
4π

= p0r
3
e + 4γ0r

2
e −

q2

32π2ϵ0re
,

where pe was obtained from the ideal gas law. The right hand side of this equation is a
monotonically increasing function (for re > 0), which tends to −∞ if re → 0 and to +∞ if
re → +∞. Hence, it allows one unique solution.

(iii) In order to study the stability of the equilibrium we need to determine the sign of the
second derivative of G̃0:

∂2G̃0

∂r2

⃓⃓⃓⃓eq.
T0

= 4πr2e

[︄
−∂pg
∂V

⃓⃓⃓⃓
T0

dV

dr
− 4γ0

r2e
+

q2

8π2ϵ0r5e

]︄eq.
.

Since q appears only in a positive term, it will not threaten the stability of the bubble. Thus,
as soon as the bubble is spherical:

∂2G̃0

∂r2

⃓⃓⃓⃓eq.
T0

> 0 ,

which means the equilibrium is stable.
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3 Quantum Optics

Rabi oscillations — A traveling two-level atom interacts with a classical single-mode
oscillating field inside a lossless microwave cavity. The detuning between the atomic transition
and the cavity field is ∆ω and the Hamiltonian describing the atom-cavity field system in the
interaction picture is given by:

Hint = ℏ
∆ω

2
σ3 − ℏ

Ω0

2
σ1 , (41)

where σ3 = |e⟩⟨e| − |g⟩⟨g| and σ1 = |e⟩⟨g|+ |g⟩⟨e| are Pauli operators, |e⟩ and |g⟩ refer to the
excited and ground state of the atom, respectively, and Ω0 is the Rabi frequency.

Assuming that the atom is initially in the ground state, namely, |ψ0⟩ = |g⟩:

i) (2 points) find the evolved state:

|ψt⟩ = exp

(︃
−iHint t

ℏ

)︃
|ψ0⟩. (42)

Then, write the analytic expression of the probability of finding the atom in the excited state
Pe(t) = |⟨e|ψt⟩|2 and comment the result in the following cases:

ii) (1 point) when ∆ω = 0 (resonance);

iii) (1 point) when ∆ω ≫ Ω0 (large detuning).

If the interaction time is set to t = π/Ω0 (corresponding to a π-pulse) and ∆ω ̸= 0:

iv) (1 point) write Pe(t = π/Ω0) as a function of the quantity x = ∆ω/Ω0 and find the
value x > 0 at which the first minimum occurs.

Ramsey fringes — Now we consider a setup involving two cavities, as displayed in
the figure.
The interaction between the atom and the field
inside each cavity is still described by the Hamil-
tonian (41), whereas, during the free evolution
between the two cavities, the Hamiltonian reads
(in the interaction picture):

Hfree = ℏ
∆ω

2
σ3. (43)

We also assume that the two cavity fields have the same phase that we set equal to zero. The
interaction time inside both the cavities is set to τ = π/(2Ω0), corresponding to a π

2
–pulse,

and the free evolution lasts for a time T = ξτ , with ξ ∈ N.
If the initial state of the atom is still |ψ0⟩ = |g⟩ and the evolved state after the whole

evolution (cavity 1 — free evolution — cavity 2) is |ψout⟩:

10
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v) (2 points) prove that the probability of finding the atom in the excited state P̃e =
|⟨e|ψout⟩|2 as a function of x = ∆ω/Ω0 can be written as:

P̃e(x; ξ) = g(x) fξ(x), (44)

where:

g(x) =
4

1 + x2
sin2

(︂π
4

√
1 + x2

)︂
,

and

fξ(x) =

[︃
cos
(︂π
4
ξx
)︂
cos
(︂π
4

√
1 + x2

)︂
− x√

1 + x2
sin
(︂π
4
ξx
)︂
sin
(︂π
4

√
1 + x2

)︂]︃2
,

vi) (3 points) show that the smallest value xm > 0 such that P̃e(xm; ξ) = 0 scales as 1/ξ in
the limit ξ ≫ 1.

11
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Solutions

— Rabi oscillations
(i) It is useful, but not necessary to solve the problem, rewriting the Hamiltonian (41) in

the following compact form:

Hint = ℏ
Ω

2
n⃗⊗ σ⃗

where Ω =
√︁
Ω2

0 + (∆ω)2, we introduced the unit vector:

n⃗ =

(︃
−Ω0

Ω
, 0,

∆ω

Ω

)︃
,

and σ⃗ = (σ1, σ2, σ3) is the vector of the Pauli operastors. Since (n⃗ ⊗ σ⃗)2 = I, it easy to show
that:

Uint(t) = exp

(︃
−iHint t

ℏ

)︃
= cos

(︃
Ωt

2

)︃
− i sin

(︃
Ωt

2

)︃
n⃗⊗ σ⃗.

If we associate the two vectors:

|e⟩ →
(︃

1
0

)︃
, and |g⟩ →

(︃
0
1

)︃
,

with the atom states {|e⟩, |g⟩}, respectively, the evolution operator Uint(t) can be written in
the matrix from:

Uint(t) =

(︄
A(Ω0,∆ω, t) B(Ω0, t),

B(Ω0, t) C(Ω0,∆ω, t)

)︄
, (45)

where

A(Ω0,∆ω, t) = cos

(︃
Ωt

2

)︃
− i

∆ω

Ω
sin

(︃
Ωt

2

)︃
,

B(Ω0, t) = i
Ω0

Ω
sin

(︃
Ωt

2

)︃
,

C(Ω0,∆ω, t) = cos

(︃
Ωt

2

)︃
+ i

∆ω

Ω
sin

(︃
Ωt

2

)︃
≡ A∗(Ω0,∆ω, t).

Thereafter, considering the initial state |ψ0⟩ = |g⟩, we find:

|ψt⟩ = Uint(t)|ψ0⟩,

= C(Ω0,∆ω, t) |g⟩+B(Ω0, t) |e⟩.

The requested probability Pe(t) is thus given by:

Pe(t) = |⟨e|ψt⟩|2 =
(︃
Ω0

Ω

)︃2

sin2

(︃
Ωt

2

)︃
. (46)

(ii) At resonance, ∆ω = 0 and Ω = Ω0, and we find:

Pe(t) = sin2

(︃
Ω0t

2

)︃
=

1

2
[1− cos (Ω0t)] ,

12
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and the atom periodically oscillates between its ground and exited state (Rabi oscillations).
(iii) In the presence of large detuning, ∆ω ≫ Ω0 and Ω ≈ ∆ω, and we obtain:

Pe(t) =

(︃
Ω0

∆ω

)︃2

sin2

(︃
∆ωt

2

)︃
≈ 0,

the atom remains in its initial state |ψ0⟩ = |g⟩ (up to a global phase).
(iv) We now set t = π/Ω0 and Eq. (46) becomes:

Pe(t = π/Ω0) =
Ω2

0

Ω2
0 + (∆ω)2

sin2

[︃
π

2Ω0

√︂
Ω2

0 + (∆ω)2
]︃
,

that, introducing the parameter x = ∆ω/Ω0, rewrites as:

Pe(x) =
1

1 + x2
sin2

(︂π
2

√
1 + x2

)︂
.

The minima of Pe(x) occur when the probability vanishes, namely, when:

π

2

√
1 + x2 = kπ, k ∈ N

and, for k = 1, corresponding to the first minimum, we have:

x =
√
3.

— Ramsey fringes
To solve the second part of the problem, we should find the evolved state |ψτ,T ⟩, that is

formally given by:
|ψτ,T ⟩ = Uint(τ)⏞ ⏟⏟ ⏞

cavity 2

Ufree(T )⏞ ⏟⏟ ⏞
free evol.

Uint(τ)⏞ ⏟⏟ ⏞
cavity 1

|ψ0⟩,

where

Ufree(T ) = exp

(︃
−iHfree T

ℏ

)︃
,

=

(︄
exp (−i∆ωT/2) 0

0 exp (i∆ωT/2)

)︄
,

is the evolution operator associated with the free evolution between the cavities. After some
calculations we obtain:

Uint(τ)Ufree(T )Uint(τ) =

(︄
A2

τ e
−i∆ωT/2 +B2

τ e
i∆ωT/2 Aτ Bτ e

−i∆ωT/2 +BτCτ e
i∆ωT/2

Aτ Bτ e
−i∆ωT/2 +Bτ Cτ e

i∆ωT/2 B2
τ e

−i∆ωT/2 + C2
τ e

i∆ωT/2

)︄
,

where Aτ = A(Ω0,∆ω, τ), Bτ = B(Ω0, τ) and Cτ = C(Ω0,∆ω, τ) have been introduced in
Eq. (45).
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(v) It is now easy to show that, in general:

P̃e(τ, T ) = |⟨e|ψτ,T ⟩|2

= 4

(︃
Ω0

Ω

)︃2

sin2

(︃
Ωτ

2

)︃[︃
cos

(︃
∆ωT

2

)︃
cos

(︃
Ωτ

2

)︃
− ∆ω

Ω
sin

(︃
∆ωT

2

)︃
sin

(︃
Ωτ

2

)︃]︃2
.

(47)

If we put τ = π/(2Ω0), T = ξτ = ξπ/(2Ω0) and we introduce again x = ∆ω/Ω0, we arrive at:

P̃e(x; ξ) =
4 sin2

(︂π
4

√
1 + x2

)︂
1 + x2

[︃
cos
(︂π
4
ξx
)︂
cos
(︂π
4

√
1 + x2

)︂
− x√

1 + x2
sin
(︂π
4
ξx
)︂
sin
(︂π
4

√
1 + x2

)︂]︃2
(48)

= g(x) fξ(x), (49)

with:

g(x) =
4 sin2

(︂π
4

√
1 + x2

)︂
1 + x2

and

fξ(x) =

[︃
cos
(︂π
4
ξx
)︂
cos
(︂π
4

√
1 + x2

)︂
− x√

1 + x2
sin
(︂π
4
ξx
)︂
sin
(︂π
4

√
1 + x2

)︂]︃2
Note that P̃e(x; 0) = Pe(x), as we may expect.

(vi) We note that the “envelope” g(x) of Eq. (49) vanishes if:

π

4

√
1 + x2 = kπ, k ∈ N

thus it becomes zero for the first time at x =
√
15, therefore, to find the first value xm > 0

giving P̃e(xm) = 0, we can focus on the interval 0 ≤ x ≤
√
15 and investigate the behaviour of

fξ(x).
The function fξ(x) vanishes when:

cos
(︂π
4
ξx
)︂
cos
(︂π
4

√
1 + x2

)︂
=

x√
1 + x2

sin
(︂π
4
ξx
)︂
sin
(︂π
4

√
1 + x2

)︂
,

or, more simply, when:

tan
(︂π
4
ξx
)︂

⏞ ⏟⏟ ⏞
Gξ(x)

=

√
1 + x2

x
cot
(︂π
4

√
1 + x2

)︂
⏞ ⏟⏟ ⏞

F (x)

. (50)

To estimate the value of xm > 0 we are looking for, we can proceed as follows. The asymptotes
of the function Gξ(x) of Eq. (50) occur at:

π

4
ξ|x| = k

π

2
→ |x| = k

2

ξ

14
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Figure 3: Left: Plot of the functions Gξ(x) and F (x) for x ∈ (−2/ξ, 2/ξ) with ξ = 4. Note the
first two asymptotes at x = ±2/ξ and the intersection at xm > 0. Right: Plot of P̃e(x; ξ) as a
function of x for ξ = 4 (solid line). We also plot the “envelope” g(x) with its first two minima
at x = ±

√
15 (dashed line).

with k ∈ N, therefore, the first asymptote will be at |x| = 2/ξ. As a matter of fact, for
0 ≤ x ≤ 2/ξ we have:

Gξ(x) ≥ 0,

with Gξ(x) = 0. Now we focus on the r.h.s. of Eq. (50) still in the interval 0 ≤ x ≤ 2/ξ, where:

F (x) =

√
1 + x2

x⏞ ⏟⏟ ⏞
F1(x) > 0

cot
(︂π
4

√
1 + x2

)︂
⏞ ⏟⏟ ⏞

F2(x) > 0

is clearly positive and, being:

F ′
1(x) =

d

dx

(︄√
1 + x2

x

)︄

= − 1

x2
√
1 + x2

< 0,

and:

F ′
2(x) =

d

dx

[︂
cot
(︂π
4

√
1 + x2

)︂]︂
= − πx

4
√
1 + x2 sin2

(︂π
4

√
1 + x2

)︂ ≤ 0,

we conclude that:
dF (x)

dx
= F ′

1(x)F2(x) + F1(x)F
′
2(x) < 0,

that is: F (x) is a monotonic decreasing function in the interval 0 ≤ x ≤ 2/ξ.
Eventually, we can state that Eq. (50) has a solution 0 ≤ xm ≤ 2/ξ leading to P̃e(xm) = 0,

and, in the limit ξ ≫ 1, we obtain xm ≈ 2/ξ.
As an example, Figure 3 shows the plots of Gξ(x), F (x) (left panel) with the solution xm

and of the probability P̃e(xm; ξ) = 0 (right panel) for ξ = 4.

15
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4 Structure of matter

Counting Spin-polarized Electrons - Consider an electron gas at temperature T = 0.
Initially neglect the Coulombic electron-electron interaction. Assume that this electron gas
is immersed in a static uniform magnetic field B = 8.64 T coupled to the electron spins (i.e.
neglect the field effect on the orbital motion of the electrons). Let the length quantity L have
the following value: L = 41.1 nm.

i) (0.5 points) Derive an expression for the maximum number density n = N/V such that
in the ground state the electron-spin magnetic moments of all N electrons align to the
magnetic field, and evaluate the value of this density (in m−3).

ii) (1 point) Describe the electrons of a metallic nanoparticle adopting a radically simplified
model: a cubic volume V = L × L × L. Evaluate Nmax = nV using the result of the
previous question.

iii) (1 point) Apply periodic boundary conditions (PBC) to the free-electron wave functions
in the L × L × L box. By taking the resulting discrete single-electron energy levels and
degeneracies into account, what is the actual maximum number NPBC

max that are 100%
spin-aligned in the same magnetic field?

iv) (2 points) Modify the nanoparticle model to a cubic-shaped L × L × L infinitely-deep
potential well, thus replacing the PBC of question iii) with null boundary conditions
(NBC) to the electron wave functions. By taking the resulting discrete single-electron
energy levels and degeneracies into account, what maximum number NNBC

max of electrons
with 100% spin alignment (in the same magnetic field) does this model yield?

v) (2.5 points) Assume that (at a Hartree-Fock mean-field level) the electric repulsion be-
tween the electrons is compensated by their attraction to a uniform background of positive
charge. In this effective independent-electrons picture, for the residual exchange effect
of the electron-electron Coulomb interaction, take the following simplified Hamiltonian:
Hexch = −1

2
J(N2

↑ + N2
↓ )

1/2. Verify that, assuming J > 0, this term favors spin-aligned
states relative to spin-antiparallel states. Estimate the value of J by the Coulomb repul-
sion of two uniformly delocalized electrons in the L× L× L box.

vi) (3 points) In the continuum model of question ii), how does the presence of the exchange
term Hexch modify the maximum number Nmax of electrons that are 100% spin-aligned in
the same magnetic field? To what value N exch

max ?

16
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Solutions

(i) A magnetic field coupled purely to the electron spin lifts the spin-up energy levels by
2 1

2
µBB = µBB, and decreases the spin-down energies by the same quantity.
The T = 0 Fermi gas is fully polarized as long as the Fermi level ϵF strikes through the

spin-down band but does not cross the spin-up band.

 0

 1

1 0 1

µB B

−µB B

εF (down spins)

Fermi level

ε
  
[a

rb
it

ra
ry

 u
n
it

s]

density of states gm(ε)  [arbitrary units]

As illustrated in this figure, the maximum number of electrons compatible with 100%
polarization occurs when the Fermi level sits infinitesimally below the bottom of the spin-up
band. This condition is expressed by

2µBB = ϵF(down spins) .

We obtain an equation for the corresponding maximum electron density, by noting that the
spin degeneracy gs for spin-down electron equals 1, rather than the usual 2 in the standard
expression

ϵF =
ℏ2

2me

(︃
6π2

gs
n

)︃2/3

.

relating ϵF to the number density n.
Accordingly:

2µBB =
ℏ2

2me

(︁
6π2 n

)︁2/3
,

2µBB
2me

ℏ2
=
(︁
6π2 n

)︁2/3
,

(︃
2µBB

2me

ℏ2

)︃3/2

= 6π2 n ,

n =
1

6π2

(︂
4µBB

me

ℏ2
)︂3/2

=
(4meµBB)

3/2

6π2 ℏ3
.

17



PLANCKS 2023 Milan, Italy Nicola Manini, UniMi

Numerically:

n =
(4meµBB)

3/2

6π2 ℏ3
=

(2.9196× 10−52 J kg)
3/2

6.945× 10−101 J3 s3

=
4.98879× 10−78 (J kg)

3/2

6.945× 10−101 J3 s3
= 7.183× 1022 J−

3/2 kg
3/2 s−3

= 7.183× 1022 kg−
3/2 m−3 s3 kg

3/2 s−3

= 7.183× 1022 m−3.

This is a relatively small density, at least 5 orders of magnitude smaller than regular
conduction-electron densities of common metals. Such a small value is to be expected, given
the smallness of magnetic energies compared to typical kinetic energies imposed by Pauli’s
principle at ordinary metallic densities.

(ii)

Nmax = n× L3 = 7.183× 1022 m−3 × 6.94265× 10−23 m3 = 4.9870 ,

i.e. approximately 5 electrons.

(iii) In a cubic box with side L the k⃗ values allowed by the PBC are

k⃗ =
2π

L
(nx, ny, nz) , with nα = 0,±1,±2, ....

Correspondingly, the discrete kinetic-energy levels are

Enx,ny ,nz =
ℏ2

2me

(n2
x + n2

y + n2
z)

(︃
2π

L

)︃2

=
(2πℏ)2

2meL2
(n2

x + n2
y + n2

z) .

Indicating the energy scale with A = (2πℏ)2/(2meL
2), the resulting low-lying energy levels

are:

nx, ny, nz degeneracy energy
0, 0, 0 1 0
±1, 0, 0 6 A
±1,±1, 0 12 2A
±1,±1,±1 8 3A
±2, 0, 0 6 4A
...

With the given data, we compare the kinetic energy scale A = 1.42662×10−22 J = 890.4 µeV
with the magnetic one 2µBB = 1.60255× 10−22 J = 1000.2 µeV. We see that

A < 2µBB < 2A .

Therefore we obtain full spin polarization with enough electrons to fill the levels listed in the
first 2 lines in the table (levels 0 and A) but not those in the third and the following lines
(levels 2A, 3A, etc.). The resulting number of spin-down electrons is

NPBC
max = 1 + 6 = 7 ,
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visibly different from the result of Question (ii).

(iv) Replacing PBC with NBC, the wavefunctions switch from plane waves to real trigono-
metric functions. If we put the origin at one corner of the box, the free-electron wavefunctions
compatible with NBC are proportional to products of sin(rα πnα/L), for each component
α = x, y, z. The “quantum numbers” nα = 1, 2, 3, ..., and the resulting energy levels are:

Enx,ny ,nz =
ℏ2

2me

(n2
x + n2

y + n2
z)
(︂π
L

)︂2
=

(πℏ)2

2meL2
(n2

x + n2
y + n2

z) .

We indicate the relevant energy scale with A′ = (πℏ)2/(2meL
2) ≡ A/4 = 3.5665 × 10−23 J =

222.6 µeV. The resulting low-lying energy levels are:

nx, ny, nz degeneracy energy excitation energy
1, 1, 1 1 3A′ 0
2, 1, 1 3 6A′ 3A′

2, 2, 1 3 9A′ 6A′

3, 1, 1 3 11A′ 8A′

2, 2, 2 1 12A′ 9A′

3, 2, 1 6 14A′ 11A′

...

We see that
3A′ < 2µBB < 6A′ .

Therefore we obtain full spin polarization with enough electrons to fill the levels listed in the
first 2 lines in the table (levels 3A′ and 6A′) and leaving those above empty. The resulting
number of spin-down electrons is

NNBC
max = 1 + 3 = 4 .

One more different value, compared to Questions 2 and 3!

(v) The spin-aligned states have Eferro = −1
2
JN . States with different numbers N↓, N↑ ̸=

0 or N have larger energy because N↑ = N −N↓, thus

Eexch = −J
2

[︁
(N −N↓)

2 +N2
↓
]︁1/2

= −J
2

[︁
N2 − 2N N↓ + 2N2

↓
]︁1/2

= −J
2

[︁
N2 − 2N↓N↑

]︁1/2
= −1

2
JN

[︃
1− 2

N↓N↑

N2

]︃1/2
> −1

2
JN,

as long as both N↓ and N↑ are nonzero.
The number density of a uniformly delocalized electron over a volume V equals V −1. The

corresponding charge density is −qeV −1. The repulsion energy between two such uniform
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charge densities can be estimated by

J =

∫︂
V

d3r1

∫︂
V

d3r2

(︂qe
V

)︂2 1

4πϵ0|r⃗1 − r⃗2|
=

q2e
4πϵ0 V 2

∫︂
V

d3r1

∫︂
V

d3r2
1

|r⃗1 − r⃗2|

=
q2e

4πϵ0 V 2

∫︂
V

d3R

∫︂
V

d3r
1

|r⃗|
=

q2e
4πϵ0 V

∫︂
V

d3r
1

|r⃗|

=
q2e

4πϵ0 V
4π

∫︂ [3V/(4π)]1/3

0

dr r2
1

r
=

q2e
4πϵ0 V

4π

∫︂ [3V/(4π)]1/3

0

dr r

=
q2e

4πϵ0 V
4π

r2

2

⃓⃓⃓⃓[3V/(4π)]1/3
0

=
q2e

4πϵ0 V
2π

(︃
3V

4π

)︃2/3

=
q2e

4πϵ0 V 1/3
2π

(︃
3

4π

)︃2/3

=
q2e

4πϵ0 L
32/3

(︂π
2

)︂1/3
= 1.357× 10−20 J = 84715.7 µeV .

(vi) The exchange term is minimum for fully aligned spins, e.g. N↓ = N , N↑ = 0, and it
amounts to

Eferro = −1

2
JN.

The energy of a state with 1 flipped spin (N↓ = N − 1, N↑ = 1) is

E1 up = −J
2
[(N − 1)2 + 12]1/2 = −J

2
[N2 − 2N + 2]1/2.

The energy difference

∆Eexch = E1 up − Eferro = −J
2
[N2 − 2N + 2]1/2 +

J

2
N =

=
1

2
JN

[︄
1−

(︃
1− 2

N
+

2

N2

)︃1/2
]︄

=
1

2
JN

[︄
1−

(︄
1 +

1

2

(︃
− 2

N
+

2

N2

)︃
− 1

8

(︃
− 2

N
+

2

N2

)︃2

+O(N−3)

)︄]︄

=
1

2
JN

[︄
1

2

(︃
2

N
− 2

N2

)︃
+

1

8

(︃
− 2

N
+

2

N2

)︃2

+O(N−3)

]︄

=
1

2
JN

[︃
1

N
− 1

N2
+

1

8

4

N2
+O(N−3)

]︃
=

1

2
JN

[︃
1

N
− 1

2N2
+O(N−3)

]︃
=

1

2
J

[︃
1− 1

2N
+O(N−2)

]︃
adds to the magnetic energy 2µBB required to flip a spin.

This exchange energy modifies the relation found for Question 2 to

2µBB +∆Eexch =
ℏ2

2me

(︃
6π2 N

V

)︃2/3

,
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This equation is readily solved in the very-large-N limit, where one assumes ∆Eexch = 1
2
J :

n =
1

6π2ℏ3
[(4µBB + J)me]

3/2

Numerically:

n =
((4µBB + J)me)

3/2

6π2 ℏ3
=

(1.2656× 10−50 J kg)
3/2

6.945× 10−101 J3 s3

= 2.050× 1025 J−
3/2 kg

3/2 s−3 = 2.050× 1025 m−3.

This density is of course far larger than the result of Question 1. The corresponding maximum
number of spin-aligned electrons in the same nano-volume V = L3 is

N exch
max = n× L3 = 2.050× 1025 m−3 × 6.94265× 10−23 m3 = 1423.3 ,

i.e. approximately 1423 electrons. Indeed N = N exch
max ≫ 1, which a posteriori justifies the

large-N approximation in the calculation of ∆Eexch.
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5 Classical Mechanics

A ball, with spherical symmetry, with exter-
nal radius r, mass m, has a moment of inertia
with respect to its center-of-mass (CM) equal
to I∗ = β mr2. The ball rolls without slipping
(“pure rolling”) inside a spherical cavity of ra-
dius R. Everything is embedded in the gravi-
tational field g at Earth’s surface. Rolling fric-
tions are negligible. The contact point of the
ball on the spherical surface is displaced with
respect to the lowest point by an angle θ, mea-
sured from the center of the spherical cavity.

r

v

R

θ

Initially, the ball is located in the lowest point of the cavity and moves with a CM speed
v0.

In general, a pure rolling motion on a spherical surface has 2 degrees of freedom (DoF),
that could be parameterized by a polar angle θ and an azimuthal angle ϕ.

i) (2 points) Write down the Lagrangian of the rolling ball as a function of θ, θ̇, ϕ, ϕ̇ and
prove that in this specific problem only θ matters, i.e. that the problem has only 1 DoF.

(In case you fail proving the previous point, just assume it’s true and continue. . . )

Write down, as functions of θ and of the other parameters of the problem, the following
formulae:

ii) (0.5 points) the speed of the CM: v(θ) = . . .

iii) (0.5 points) the tangent acceleration of the CM: at(θ) = . . .

iv) (0.5 points) the reaction of the constraint, produced by the surface: Fconstr(θ) = . . .

v) (0.5 points) the static friction, produced by the surface: Ffrict(θ) = . . .

Keeping in mind the spherical symmetry of the rolling object:

vi) (2 points) what is the maximum possible value of β (βmax)?

Now, let’s assume β = βmax, r = 1 cm, R = 0.5 m, µs = 0.9:

vii) (4 points) what is the minimum value vmin
0 of the initial speed v0, such that the rolling

ball keeps the conditions of “pure rolling” during all its motion? [provide both formula
and numerical value]
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Solutions

The CM of the rolling ball moves on a spherical surface of radius (R − r), with speed v. Its
height over the lowest position is h = (R − r)(1− cos θ). The ball rolls with angular velocity
ω, where the no-slipping condition imposes that v = ωr; moreover, whatever the motion of
the ball, its moment of inertia with respect to the rotation axis is always I∗, because of the
spherical symmetry. Therefore, the kinetic energy of the rolling ball is

Ek =
m

2
v2 +

I∗

2
ω2 =

m

2
(1 + β)v2 (51)

The potential energy can be written as

Ep = mgh = mg(R− r)(1− cos θ) (52)

The velocity of the CM has two components:

vθ = (R− r)θ̇ ; vϕ = (R− r) sin θ ϕ̇

therefore the speed can be written as v = (R−r)
√︂
(θ̇)2 + (sin θ ϕ̇)2. The Lagrangian is therefore

(i) L = Ek − Ep =
m

2
(1 + β)(R− r)2((θ̇)2 + (sin θ ϕ̇)2)−mg(R− r)(1− cos θ)

The Lagrangian is cyclical in ϕ (i.e.
dL
dϕ

= 0), therefore its conjugate momentum Lϕ =

dL
dϕ̇

= m(1 + β)[(R − r) sin θ]2ϕ̇ is a constant in the motion. Since it is null in the initial

condition (when θ = 0), it remains null forever, which means that ϕ̇ = 0 and the motion is
only along θ.

The forces acting on the rolling ball are:

• the weight F⃗g = −mg ẑ, conservative, oriented downwards; it may be split along the
directions n̂, t̂, respectively orthogonal and tangent to the surface, as:

F⃗g = −mg(cos θ n̂+ sin θ t̂)

• the reaction of the constraint F⃗constr = Fconstr n̂, oriented towards the centre of the
spherical cavity (Fconstr ≥ 0), not producing any work since the displacement is always
orthogonal to it;

• the static friction F⃗frict = Ffrict t̂, tangent to the surface, not producing any work since
the contact point is always at rest; it must fulfil the condition:

|Ffrict| ≤ µs Fconstr

Questions (ii), (iii) can be addressed using energy conservation:

E = Ek + Ep =
m

2
v2 +

I∗

2
ω2 +mgh
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From the condition of pure rolling, ω =
v

r
, hence I∗ω2 = βmr2

v2

r2
= mβv2. Moreover, the CM

of the rolling ball moves along a circumference of radius (R − r); choosing h = 0 for the CM
in the lowest point of the cavity, we get h = (R− r)(1− cos θ). Therefore we obtain:

E =
m

2
(1 + β)v2 +mg(R− r)(1− cos θ)

In the lowest point E =
m

2
(1 + β)v20, hence:

v2 = v20 −
2g(R− r)(1− cos θ)

1 + β
(53)

(ii) v(θ) =

√︄
v20 −

2g(R− r)(1− cos θ)

1 + β

Taking the derivative with respect to the time of the equation (53) we get:

2vat = −2g(R− r) sin θ

1 + β

dθ

dt

Now, the CM moves along a circumference of radius (R − r) with angular speed
dθ

dt
, hence

v = (R− r)
dθ

dt
. We can then work out (cancelling v away) that

(iii) at(θ) = −g sin θ
1 + β

Alternative approach to question (iii): let’s use the cardinal equation of the torques. Since

the forces F⃗constr, F⃗frict are adaptive — i.e. not calculable, before having already solved the
motion — let’s choose as a pole the contact point: the arms of both adaptive forces are then
null, hence their torques are also null. On the opposite, the weight can be thought as if entirely
applied to the CM; hence its torque has module |Mg| = rmg sin θ and is oriented “outwards”
from the plane of the drawing. Since the ball rolls clockwise (in the drawing), it has both ω⃗

and L⃗ oriented “inwards” in the plane of the drawing, therefore it is convenient to choose as
positive the “inwards” orientation. We get then:

L = I∗ω +mrv = mr(1 + β)v

and Mg = −mrg sin θ. From Mg =
dL

dt
we get answer (iii) again.

Projecting all forces along n̂ we get the centripetal force:

Fconstr −mg cos θ = m
v2

R− r

from which — using equation (53) — we get

Fconstr = m

(︃
v20

R− r
− 2g(1− cos θ)

1 + β
+ g cos θ

)︃
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(iv) Fconstr(θ) =
mv20
R− r

+
mg

1 + β
((3 + β) cos θ − 2)

Projecting all forces along t̂ we get the tangent force:

Ffrict −mg sin θ = mat = −mg sin θ
1 + β

(v) Ffrict(θ) = mg sin θ
β

1 + β

The maximal moment of inertia, for given r andm, is achieved when the mass is distributed
such to maximize the distance from the rotation axis; for a spherical symmetry, this happens

in the case of a hollow sphere, for which I∗ =
2

3
mr2. Therefore:

(vi) βmax =
2

3

The conditions to have a pure rolling are Fconstr > 0 (contact) and |Ffrict| < µsFconstr (no
slipping). Obviously, the first is implied by the second, therefore we focus on that one. We
must study the condition:

mg sin θ
β

1 + β
< µs

(︃
mv20
R− r

+
mg

1 + β
((3 + β) cos θ − 2)

)︃
that, for β =

2

3
(and cancelling m away) reads:

2

5
g sin θ < µs

v20
R− r

+
3

5
µsg

(︃
11

3
cos θ − 2

)︃
or

2 sin θ − 11µs cos θ⏞ ⏟⏟ ⏞
f(θ)

< µs

(︃
5v20

g(R− r)
− 6

)︃
Let’s now study the function f(θ):

f ′(θ) = 2 cos θ + 11µs sin θ ; f ′′(θ) = −f(θ)

The extremals are obtained by setting f ′(θ0) = 0, which yields tan(θ0) = − 2

11µs

= −0.202.

In the interval of interest, θ ∈ [0; π], the only solution is θ0 = 2.942 rad; in that condi-
tion, f(θ0) = 10.10 and f ′′(θ0) = −f(θ0) < 0, therefore this is a maximum. Therefore, if

µs

(︃
5v20

g(R− r)
− 6

)︃
> f(θ0) we are sure that pure rolling always holds. In terms of v0, this

conditions reads:

v20 >
g(R− r)

5

(︃
f(θ0)

µs

+ 6

)︃
i.e.:

(vii) vmin
0 =

√︄
g(R− r)

5

(︃
f(θ0)

µs

+ 6

)︃
= 4.07 m/s
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6 Electromagnetism

A coaxial cable (Figure 4a) consists of a central ohmic conductor of radius a, length h, resistance
R surrounded by a coaxial perfectly conducting cylinder of radius b; the region between the
central conductor and the external cylinder is free space.

Figure 4: geometry of the battery a), coaxial cable b), and resistor c)

The cable is connected from on one side to a circular battery of negligible thickness (Figure
4b); the region r < a is at potential V , the potential inside the battery decreasing radially to
zero as

ϕ(r) =
V

ln a
b

ln
r

b

On the other side, the cable is connected to a circular load resistor RL, constructed with
ohmic conductor, of negligible thickness, of inner and outer radii a and b respectively (Figure
4c). Consider the four regions

region 1
0 < r < a
0 < z < h

region 2
a < r < b
z = 0

region 3
a < r < b
z = h

region 4
a < r < b
0 < z < h

i) (4 points) Determine the electric field in each of the four regions and the surface charge
densities on the boundaries separating the four regions. Hint: solve the Laplace equation
in cylindrical coordinates (see also the first hint of problem 1) using variables separation
method with separation constant equal to 0.

ii) (2 points) Determine the Poynting vector in the above regions and discuss the energy
fluxes among the various regions.
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iii) (4 points) Finally, assume R = 0 and determine the electromagnetic momentum of the
system and compare it with movements of the parts of the system, if any.
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Solutions

(i) Electric Field in regions 1, 2, 3, 4

The problem of the electric field associated to a conductor carrying a steady current has not
received much attention in textbooks; notable exceptions are Sommerfeld [1], Jefimenko [2],
Haus and Melcher [3]. The problem has received attention in literature. The problem presented
here is based on the treatment of Marcus [4], Russell [5], McDonald [6]. The symmetry of the
problem suggests the use of a cylindrical coordinate system with the z axis along the axis of
the inner conductor; because of the azimuthal symmetry, the potential is function only of the z
and r coordinates ϕ(r, z). Problems of steady currents in ohmic conductors are usually solved
with Laplace equation, possibly with mixed boundary conditions. The boundary conditions
of this problem (that will be stated in the following) lead to the general solution, obtained
variables separation method with separation constant equal to 0 [4], [5]

ϕ(r, z) = (A+B ln r)(e+ fz)

The total current in the conductors is I = V/(R + RL); the voltage drop in the inner
conductor is V R/(R + RL), the remaining voltage V RL/(R + RL appears across the load
resistor. For future convenience we define α = R/(R +RL), β = RL/(R +RL), α + β = 1.

Electric Field inside the inner conductor, region 1

Since for r > a there is no conduction, the current density (and the electric field) do not have
component normal to the wire surface. The boundary conditions are

ϕ1(r, h) = V ϕ1(r, 0) =
RL

R+RL
V = βV ∂ϕ1

∂r

⃓⃓
r=a

= 0

Application of the boundary conditions lead to the solution in region 1

ϕ1(r, h) = V (β + α z
h
) E1 = −αV

h
êz

0 < r < a
0 < z < h

Electric Field in the load resistor, region 2

The load resistor has negligible thickness and the current assumes the form of a surface current
density K(r) = 1/ηE(r), η being the surface resistivity. The zero thickness remove the z
dependence in the potential; the boundary conditions are

ϕ2(r = a) = V RL

R+RL
= βV ϕ2(r = b) = 0

Application of the boundary conditions lead to the solution in region 2

ϕ2(r) = V RL

R+RL

1
ln a

b
ln r

b
= βV

ln a
b
ln r

b
E2 = − βV

ln a
b

1
r
êr =

βV

ln b
a

1
r
êr

a < r < b
z = 0
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Electric field in the battery, region 3

The potential distribution in the battery is given; the resulting electric field is

ϕ3(r) =
V

ln a
b
ln r

b
E3 = − V

ln a
b

1
r
êr =

V
ln b

a

1
r
êr

a < r < b
z = h

Notice that the current flows in the opposite direction of the electric field because the
battery provides the necessary electromotive force to maintain the current.

Electric Field in the free space region 4

In the free space region the potential must be 0 at the outer boundary r = b and satisfy the
potential continuity condition at the boundaries with regions 1, 2, 3. The resulting potential
is

ϕ4(r, z) =
V

ln a
b
ln r

b
(β + α z

h
) E4 = − V

ln a
b

1
r
(β + α z

h
)êr − V

ln a
b

α
h
ln r

b
êz

a < r < b
0 < z < h

Electric field plot and surface charge densities

Figure 5: Qualitative
plot of the electric field
in the four regions

A qualitative plot of the electric field is shown in Figure 5. The
component of the electric field in region 4 normal to surfaces that
limit the free space region determines the surface charge densities on
the boundaries.

boundary 1− 4 σ1(z) = ε0E4r(a, z) = − ε0V
ln a

b

1
a
(β + α z

h
)

boundary 4 σ4(z) = −ε0E4r(b, z) =
ε0V
ln a

b

1
b
(β + α z

h
)

boundary 4− 3 σ3(r) = ε0E4z(r, h) = + ε0V
ln a

b

α
h
ln r

b

boundary 4− 2 σ2(r) = −ε0E4z(r, 0) = − ε0V
ln a

b

α
h
ln r

b

Please notice ln a/b < 0 in the above formulas.
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(ii) Poynting Vector and Power Flux

The steady current condition allows to use the Ampere’s circuital law without the displace-
ment current term. Due to the problem symmetry, the magnetic induction field lines are
circumferences coaxial with the z axis. We obtain

B = −µ0I
2π

1
r
êϕ a < r < b

B = −µ0I
2π

r
a2
êϕ 0 < r < a

The Poynting vector in region 4 is simply

S =
1

µ0

E×B = (Ezêz + Erêr)× (Bϕêϕ) = −EzBϕ

µ0

êr +
ErBϕ

µ0

êz

Inserting the expression of the electric field calculated previously we obtain

S =
V I

2π

[︃
− ln r/b

ln a/b

α

h

1

r
êr + (β + α

z

h
)

1

r2 ln a/b
êz

]︃
The Poynting vector S has radial and axial components; is zero on the other surface (r = b).

We now evaluate the flux on the surfaces of the battery, of the central conductor and of the
load resistor. Let’s start with the flux on the battery surface

Φ3 =

∫︂
battery

S · da =

∫︂ b

a

V I

2π

[︃
(β + α

z

h
)

1

r2 ln a/b
êz

]︃
z=h

(−êz)2πrdr = −V I
∫︂ b

a

dr

r ln a/b
= V I

that is equal to the power supplied by the battery, as expected.
The flux on the central conductor

Φ1 =

∫︂
inner

S · da =

∫︂ h

0

[︃
− ln r/b

ln a/b

α

h

1

r
êr

]︃
r=a

· êr2πadz = −αV I = − R

R +RL

V I = −RI2

Again, this is the power dissipated in the central conductor.

Finally, the flux on the load resistor is

Φ2 =

∫︂
load

S · da =

∫︂ b

a

V I

2π

[︃
(β + α

z

h
)

1

r2 ln a/b
êz

]︃
z=0

· êz2πrdr =
V Iβ

ln a/b

∫︂ b

a

dr

r
= −βV I = −RLI

2

as expected.

(iii) Momentum of the electromagnetic field

The momentum density g of the electromagnetic field is proportional to the Poynting vector;
in region 4 we have

g =
S

c2
=

V I

2πc2

[︃
− ln r/b

ln a/b

α

h

1

r
êr + (β + α

z

h
)

1

r2 ln a/b
êz

]︃
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The total momentum of the system is obtained by integrating the density g over the volume1

pEM =

∫︂
cable

gdV =
V I

2πc2
êz

ln a/b

∫︂ h

0

(β + α
z

h
)dz

∫︂ b

a

2πr

r2
dr = −V Ih

c2
(β +

α

2
)êz

At first sight, it is certainly strange to find a non zero momentum in a system with time
independent electromagnetic fields; this has been discussed by Griffiths [7] and more recently
by Boyer [8], McDonald [6] and Babson et al. [9]. The relevant point here is that there is
energy that leaves the battery (zbattery = h) and increases the energy content of the load (Joule
dissipation, at zload = 0). To eliminate Joule dissipation in the inner conductor, for the rest
of the discussion let’s assume that the central conductor has zero resistance (R = 0). The
electromagnetic momentum become

pEM = −I
2h

c2
RLêz

Assuming that the system is isolated, the center of energy of the system must be at rest.
The coordinate of the center of energy zCE is

zCE =
1

MT c2

∫︂ h

0

z
[︁
ρMatter(z)c

2 + ρEnergy(z)
]︁
dz ≡ zCE Matter + zCE Energy

In the above definition ρMatter and ρEnergy are, respectively, the matter density and the
energy density initially contained the battery, and MT c

2 = MMatterc
2 + U is the total energy

of the system 2. Since the center of energy is at rest we have

dzCE

dt
= 0

dzCE Matter

dt
+
dzCE Energy

dt
= 0 vCE Matter = −dzCE Energy

dt
= 0

Finally we have

dzCE Energy =
1

MT c2
(zLoadPdt− zBatteryPdt) = −hPdt

MT c2
vCE Matter = −dzCE Energy

dt
=

hV I

MT c2

We conclude that the electromagnetic momentum pEM is compensated by an equal and
opposite momentum of the matter MTvCEMatter. The origin of the matter momentum is in
the forces that act on the cable during the initial transient, when the battery is switched on,
before the steady condition is reached. A detailed analysis of the transient need further work.
The recoil speed of the matter is of order 1/c2 and it is certainly not measurable; however, it
is interesting to observe the self-consistency of the electromagnetic theory.

1We should have included also the momentum density inside the central conductor; however this integrates
to zero

2We do not consider the contribution of electromagnetic energy stored in the free space between the inner
and outer conductor: this energy is negligible and time independent
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7 Medical Physics

In conventional external beam radiation therapy, X-rays are used to impart a radiation dose
to the tumour, sparing the surrounding healthy tissue as much as possible. Consider a medical
linear accelerator (linac) where electrons are accelerated to an energy of 15MeV and then
stopped in a metal target. A portion of their kinetic energy is transformed into bremsstrahlung
X-rays that form a radiotherapy photon beam. Because of the energies of the produced X-rays
and the low atomic number of tissues, the most important interaction of the photon beam
with patient tissues is Compton scattering.
Consider a Compton effect interaction where a photon is scattered on a free (i.e. loosely bound)
electron with a scattering angle θ (i.e. angle between the incident photon direction and the
scattered photon direction).

i) (1 point) Derive the expression of the kinetic energy of the recoil electron as a function
of the incident photon energy and of the scattering angle θ;

ii) (1 point) Show that the energy of photon scattered with angles θ larger than π/2 cannot
exceed 511 keV no matter how high the incident photon energy is.

Consider now the interaction of the X-rays produced by the linac with an absorber, and
the related interaction coefficients µ/ρ (mass attenuation coefficient) and µen/ρ (mass energy
absorption coefficient).

iii) (1 point) Express the ratio µen/ρ
µ/ρ

in terms of: (a) the mean fraction fj of the incident
photon energy that is transferred to kinetic energy of charged particles in an interaction
of type j, (b) the component cross section σj relating to the interaction of type j, and
(c) the fraction g of the kinetic energy transferred by photons to charged particles that
is subsequently lost in radiative processes.

The ratio µen/ρ
µ/ρ

vs. photon beam energy produced by the linac, for a high Z absorber (lead),
is plotted in Figure 6.

iv) (1 point) How do you explain the minimum value of the ratio µen/ρ
µ/ρ

in lead around
100 keV?

v) (1 point) How do you explain the decrease of the ratio µen/ρ
µ/ρ

in lead with increasing the
photon energy occurring above approximately 10MeV?

Accelerated charged particles, with mass m ≫ melectron, can also be used for external beam
radiotherapy to treat tumours. The advantage of hadrontherapy localised dose deposition with
respect to conventional radiotherapy is related to the typical energy release of such particles in
matter, which follows the Bethe-Bloch equation. The presence of the Bragg peak, that appears
when the heavy charged particle velocity approaches to zero, defines also the concept of range
of such particles in matter.

vi) (1 point) Describe the main dependencies of hadrons energy loss in matter, discussing
the characteristics of the Bragg peak (why it is a peak and why it has a non-null width).

vii) (1 point) Express the range scaling laws in the case of:
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Figure 6

a) different particles with same velocity, traversing the same medium;

b) same particle traversing different media.

viii) (1 point) Compute the ratio of protons range with respect to carbon ions range, when
protons and carbon ions have the same velocity.

Charged particles undergo also multiple coulomb scattering (MCS) by the nuclei field when
traversing a medium, causing small deflections from the primary track path.

ix) (1 point) Describe the expression of the root mean squared deflection angle projected
to a plane (θ0) due to the MCS in the case of small traversed thickness.

x) (1 point) Considering a 150MeV proton and a 285MeV/u carbon ion, compute the
ratio of θ0 of proton over carbon ion after 1 meter of air.
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Solutions

(i) The relativistic conservation of total energy and momentum laws are used in the derivation
of the expression of the kinetic energy of the recoil electron.
The conservation of total energy is expressed as:

hν +mec
2 = hν ′ + Ee = hν ′ +mec

2 + EK , (54)

where hν is the incident photon energy, hν ′ is the scattered photon energy, mec
2 is the rest

energy of the recoil electron, Ee is the total energy of the recoil electron and EK is the kinetic
energy of the recoil electron.
The conservation of momentum, together with trigonometric laws, can be expressed as:

p2e = p2 + (p′)
2 − 2pp′ cos θ, (55)

where pe is the momentum of the recoil electron, p is the momentum of the incident photon
and p′ is the momentum of the scattered photon.
By properly combining the two above expressions, the kinetic energy of the recoil electron can
be derived as:

EK = hν · α · (1− cos θ)

1 + α · (1− cos θ)
, (56)

where α = hν
mec2

.

(ii) The energy of the scattered photon may be derived as:

hν ′ = hν · 1

1 + α · (1− cos θ)
. (57)

For a given angle θ, the scattered photon energy increases with increasing the incident photon
energy up to a saturation value.
For θ = π/2 the scattered photon energy is equal to hν ′ = hν

1+ hν
mec2

characterized by a saturation

value of hν ′ → mec
2 = 511 keV for hν → ∞.

For larger angles, the saturation value of the scattered photon energy is lower than 511 keV
and for θ = π the saturation value of the scattered photon energy is equal 1

2
mec

2.

(iii) The final expression to be reported is:

µen/ρ

µ/ρ
=
∑︂
j

fjσj
σj

· (1− g). (58)

Indeed, it should be recognized that:

(µen/ρ) = (µtr/ρ)(1− g), (59)

where (µtr/ρ) is the mass energy transfer coefficient that can be written as:

(µtr/ρ) = (µ/ρ) · ftr = (µ/ρ) ·
∑︂
j

fjσj
σj

, (60)
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where ftr is the total mean energy transfer fraction. Therefore:

(µen/ρ) = (µ/ρ) ·
∑︂
j

fjσj
σj

· (1− g), (61)

and:
µen/ρ

µ/ρ
=
∑︂
j

fjσj
σj

· (1− g). (62)

Basically, the ratio µen/ρ
µ/ρ

corresponds to the total mean energy absorption fraction:

fab =
µen/ρ

µ/ρ
= ftr · (1− g). (63)

(iv) In the energy range we are considering, the minimum value of the ratio µen/ρ
µ/ρ

essentially
corresponds to the minimum value of the total mean energy transfer function ftr. For high
atomic number Z absorbers such as lead, ftr has a minimum value when the photon energy
equals the K shell binding energy.

(v) The decrease of the ratio µen/ρ
µ/ρ

(i.e. the decrease of the total mean energy absorption

fraction fab) with increasing the photon energy is due to the fact that, for a given absorber
material, the mean radiation fraction g increases with photon energy, mainly by bremsstrahlung
interaction of the secondary charged particles while they travel through the absorbing medium.
While ftr continues to increase with increasing the photon energy, fab attains a local maximum
and then decrease as result of the increase of g. The energy at which the local peak in fab
occurs is inversely proportional to the absorber atomic number Z appearing at approximately
10MeV for high Z absorbers, as lead.

(vi) The energy loss of charged hadrons in matter is described by the Bethe-Bloch formula,

dE

dx
∝ z2

β2
ρ
Z

A

[︃
ln
(︂ . . .
I2

)︂
+ · · · − 2

C

Z
− δ

]︃
, (64)

where:

• ρ is the material density;

• Z/A is the material ratio of the atomic number over mass number (which is always ∼ 0.5
except for Hydrogen);

• I is the material mean excitation energy;

• z is the impinging particle atomic number;

• β = v/c is the impinging particle velocity;

• C is the shell correction, important at low energy;
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• δ is the density correction, important at high energies.

The energy loss of charged hadrons in matter as a function of the traversed depth is character-
ized by the Bragg curve: at the material entry channel, the particle has its maximum velocity
and therefore lower energy loss. With increasing depth, the particle velocity decreases and
the energy loss increases. At the end of the particle trajectory (β 10−2), the particle spends
a “long” time in proximity of any material electron, transferring a large amount of energy.
Then it starts to pick up the electrons, lowering its effective charge (z) and the stopping power
drops, resulting in a peak, called Bragg peak.
The width of the peak depends on the stochastic nature of the Columbian interactions of
charged hadrons with material nuclei: the number of interactions and the amount of kinetic
energy transferred to the atomic electrons at each interaction is different for each particle (with
same beta traversing the same medium), causing the energy loss statistical fluctuations.
The Bragg peak position depends on the charged hadron initial kinetic energy: the more the
energy, the deeper the Bragg peak position.

(vii) The range of the charged hadron can be derived by the Bethe-Bloch formula.
For different particles traversing the same material, R can be expressed as a function of β:

R =

∫︂ R

0

dx =

∫︂ R

0

dx

dE
dE =

∫︂ E0

0

dE

z2fE(E)
=

∫︂ β0

0

βdβ

fβ(1− β2)3/2
. (65)

For particles with same β, traversing different materials, R can be expressed by the Bragg-
Kleeman rule:

R = αEp, (66)

with

α = c

√
A

ρ
. (67)

a) For different particles traversing the same material, with same β, applying Eq. 65:

Ra(β)

Rb(β)
=
maz

2
b

mbz2a
. (68)

b) For the same particle traversing different materials, applying Eq. 66:

R1

R2

=
ρ2
ρ1

·
√
A1√
A2

. (69)

(viii) Applying Eq. 68:

Rp =
mpz

2
12C

12mpz2p
R12C =

36

12
R12C = 3 ·R12C . (70)

(ix) The expression of the root mean squared deflection angle is:

θ0 =
13.6MeV

βcp
z

√︃
∆x

X0

(︃
1 + 0.038 ln(

∆x

X0

)

)︃
, (71)

where:
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• β = v/c of the particle projectile;

• c is the light velocity;

• p is the particle momentum;

• z is the particle charge (atomic number);

• ∆x is the traversed thickness;

• X0 is the radiation length, which is equal to 7/9 of the mean free path for pair production
by a high energy photon.

θ0 is lower for heavy particles and/or particles with high kinetic energy.
This formula is valid for small material thickness or very low density materials, where the
energy loss due to MCS is negligible.

(x) Since air is a very low density material, applying the formula at point (ix):

θ0p
θ012C

=

(︃
zp

(βcp)p

)︃(︃
(βcp)12C
z12C

)︃
∼
(︃

zp
(βcp)p

)︃(︃
2(βcp)p
6zp

)︃
= 3 (72)
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8 Astrophysics of protoplanetary discs

Stars form from gas gravitational collapse in molecular clouds. As a result of angular mo-
mentum conservation, the collapse also produces discs, namely dense structures concentrated
around a specific plane (often called the disc mid-plane), which rotate around the newly formed
star. It is in these discs that planets form and for this reason they are often called proto-
planetary discs. Given the geometry of these systems, it is convenient to use a cylindrical
coordinate system to describe them.

IMPORTANT: pay attention to the difference between cylindrical radius r and spherical
radius R (see sketch below).

r

z

R

θ

fg

i) (3 points) Assume for simplicity that the disc is vertically isothermal. In this case the
gas pressure P is simply given by P = c2sρ, where cs is the gas sound speed and ρ is
the gas density. After further assuming that the gas is in hydrostatic equilibrium and so
there is no motion along the vertical direction, derive the vertical density profile ρ(z).
To do so you can neglect the disc self-gravity and assume that only the star contributes
to the gravitational force.

ii) (1 point) These discs are typically geometrically thin, meaning that their thickness
H is much smaller than the radial coordinate r: H ≪ r. Simplify the expression you
derived in the previous question under this hypothesis and derive a relation between the
gas density in the midplane ρ0(r) = ρ(r, z = 0) and the disc surface density, defined as
Σ =

∫︁ +∞
−∞ ρ(z)dz, that is, the vertical integral of the disc density.

iii) (3 points) Considering only the disc midplane at z = 0, derive the rotation curve vϕ(r)
of the disc. As before, you can neglect the disc self-gravity and assume that only the
star contributes to the gravitational field. In addition to gravity, you need to take into
account gas pressure. For simplicity, you can assume that the gas density in the midplane
is a power-law function of the radial coordinate: ρ0 ∝ r−p . In the same way, you can
also assume that the sound speed cs(r) ∝ r−q is a power-law.

iv) (1 point) Proto-planetary discs are close to Keplerian rotation. Using the expression
you derived in the previous point, quantify the fractional deviation of the rotation curve
from Keplerian rotation, and show that this is indeed small provided that the disc is
thin.

v) (2 points) Generalise the expression you derived for the rotation curve for z ̸= 0. As
in question 2, use the thin disc approximation and only consider the case of small z/r.
Does gas at high altitude rotate faster or slower than the gas in the midplane?
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Hints:
The operator (A · ∇)B in cylindrical coordinates is the following:

(A · ∇)B =

(︃
Ar
∂Br

∂r
+
Aϕ

r

∂Br

∂ϕ
+ Az

∂Br

∂z
− AϕBϕ

r

)︃
r̂ +

+

(︃
Ar
∂Bϕ

∂r
+
Aϕ

r

∂Bϕ

∂ϕ
+ Az

∂Bϕ

∂z
+
AϕBr

r

)︃
ϕ̂ +

+

(︃
Ar
∂Bz

∂r
+
Aϕ

r

∂Bz

∂ϕ
+ Az

∂Bz

∂z

)︃
ẑ
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Solutions

(i) To get the density profile we need to solve for hydrostatic vertical equilibrium in the vertical
direction:

1

ρ

dP

dz
= fgrav,z = − GM∗z

(r2 + z2)3/2
. (73)

Substituting P = ρc2s and taking cs vertically constant:

1

ρ

dρ

dz
= − GM∗z

c2s(r
2 + z2)3/2

, (74)

which is separable and can be directly integrated:

log ρ− log ρ0 = −GM∗

c2s

(︃
1

r
− 1

R

)︃
(75)

to give the final expression:

ρ = ρ0 exp

[︃
GM∗

c2s

(︃
1

R
− 1

r

)︃]︃
. (76)

(ii) Consider the factor
1

R
− 1

r
=

1

(r2 + z2)1/2
− 1

r
. (77)

We can easily expand this to first order in z2/r2 to

1

R
− 1

r
≃ − z2

2r3
, (78)

which implies that the density reduces to

ρ = ρ0 exp

(︃
−GM∗

c2sr
3

z2

2

)︃
. (79)

We can write this as

ρ = ρ0 exp

(︃
− z2

2H2

)︃
, (80)

which makes it clear that the density profile is a Gaussian function. The scale-height H of the
Gaussian is given by

H =
csr

3/2

(GM∗)1/2
=

cs
ΩK

, (81)

which we have simplified recognising that
√︂

GM∗
r3

is the Keplerian angular frequency.

The surface density profile can be obtained from the integration along ẑ:

Σ(r) =

∫︂ ∞

−∞
ρ(z, r)dz .
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If we insert the expression of ρ found before we get:

Σ(r) = ρ0H
√
2π .

(iii) To get the velocity profile we need to write force balance in the radial direction.
Assuming steady state and assuming that the disc is azimuthally symmetric, the only terms
that do not vanish are:

v2ϕ
r

=
GM∗

r2
+

1

ρ

dP

dr
. (82)

Substituting P = c2sρ, we obtain

v2ϕ
r

=
GM∗

r2
+
c2s
ρ

dρ

dr
+

dc2s
dr

=
GM∗

r2
+
c2s
r

d log ρ

d log r
+
c2s
r

d log c2s
d log r

=

=
GM∗

r2
− (p+ 2q)

c2s
r
.

(83)

We can then write the velocity as

vϕ = vK

[︃
1− c2s

v2K
(p+ 2q)

]︃1/2
, (84)

where we have used the Keplerian velocity vK =
√︁
GM∗/r.

(iv) To connect the formula we just derived to the requirement that the disc is thin we
notice that cs/vK = H/R, which is a consequence of the fact that H = cs/ΩK . The azimuthal
velocity is thus

vϕ = vK

[︄
1−

(︃
H

r

)︃2

(p+ 2q)

]︄1/2
, (85)

and the second term is small provided that H ≪ r. In this case we can expand the expression
to

vϕ ≃ vK

[︄
1− 1

2

(︃
H

r

)︃2

(p+ 2q)

]︄
(86)

and the fractional difference from Keplerian rotation is 1
2

(︁
H
r

)︁2
(p+ 2q) = O((H/r)2).

(v) The calculation proceeds largely as before, except for a) the gravity term, which now
depends on the spherical distance R2 = r2 + z2. We can expand this for the case (z/r)2 ≪ 1
and obtain

GM∗

R2
=
GM∗

r2

(︃
1− 3

2

z2

r2

)︃
(87)

b) the term c2s
ρ

dρ
dr
. When computing the derivative, we have to keep in mind that ρ =

ρ0 exp(−z2/2/H2) and so this produces a new term:

c2s
exp

(︁
− z2

2H2

)︁ ∂
∂r

[︃
exp

(︃
− z2

2H2

)︃]︃
. (88)
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While z does not depend on r, H = cs/Ω does because both cs and Ω do and so we must
apply the chain rule. This produces two new terms, one of which cancels out with the one we
derived in a).

After some algebra we get to the final result, which is:

vϕ = vK,mid

[︄
1−

(︃
H

r

)︃2(︃
p+ 2q + q

z2

H2

)︃]︄1/2
. (89)

Note that we have defined vK,mid =
√︂

GM∗
r

, the value in the midplane. The new term is

negative and so for z ̸= 0 the material rotates slower than in the midplane.
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9 Particle physics

Magnetars, namely a type of neutron stars with an extremely high magnetic field, are good
candidates to be the sources of ultra-high energy cosmic rays, which are the most energetic
particles ever observed. However, it’s likely that they can accelerate up to the highest energies
(∼ 100 EeV) only in the very early stages of their life. One of the closest known Magnetars is
SWIFT J1818.0-1607, which is estimated to be only 240 years old. It is located 4.4 kpc away
from the Earth, on the galactic plane. Suppose SWIFT J1818.0-1607 emitted for a very small
time at its birth cosmic rays, and that they consist only in three components: protons (P),
neutrons (N) and iron nuclei (I), each following its own emission spectrum:

NP = N0P

(︃
E

E0

)︃−2.5

NN = N0N

(︃
E

E0

)︃−2.5

NI = N0I

(︃
E

E0

)︃−2.2

,

where E0 = 1017 eV, N0P = 1040, N0N = 1038, N0I = 1039 and consider a hard cutoff at
EC = 2 · 1020 eV.

i) (4 points) Consider only particles with E > E0. What would the spectrum of particles
observed at Earth in 1783 be? How many events would be observed now by the Pierre
Auger Observatory (area= 3000 km2)? At which energy? Imagine that the Galactic
Magnetic Field between us and the magnetar is uniform and constant, with a direction
perpendicular to the galactic plane and its intensity is 1 µG.

Hint : consider arcsin x ≈ x+ x3

6
.

ii) (3 points) Cosmic rays reach the Earth and immediately interact with the atmosphere.
In the first interactions Kaons are often produced. Imagine that a K+ with energy E=1
TeV is produced in the high atmosphere (h=10 km). Which particles would it most
likely decay into? Compute the energies in the Earth’s reference system of its daughter
particles. Are they likely to reach the ground or will they decay again? In which particles?
(consider only the most probable decays)

iii) (3 points) A muon produced in the high atmosphere (at an altitude h =1000 m) moves
towards Earth in a radial direction, on the equatorial plane from the projection of the
Greenwich meridian. Suppose that the Earth magnetic field has a value of 0.5 G, that it is
constant and that it is oriented towards the North Pole (ignoring the discrepancy between
the magnetic North Pole and the geographical one). What momentum is needed for the
muon so that it hits the city of Nairobi (approximately longitude 37°E and latitude
0°)? Consider the Earth radius to be 6400 km. If the muon has the momentum you
just computed, what is its probability to reach Nairobi, if the average life of a muon is
τµ = 2 · 10−6 s?
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Solutions

(i) Protons and Iron nuclei are charged particles and thus are deflected (and delayed) by
magnetic fields. So, when the Magnetars emits cosmic rays, the only component that gets to
the Earth together with the light is the neutron one. Neutrons, however, decay with a lifetime
of roughly 15 minutes. Their decay time is boosted by the relativistic time delay so that their
mean decay path (considering they travel at c) is:

λ = 9.2 kpc · E[EeV] = 0.92 kpc · E
E0

.

There is also a geometric factor to be computed:

ϕ0 =
N0N

4πD2
= 4.2 · 102 km−2 ,

so the final flux will be:

ϕ1783 = ϕ0

(︃
E

E0

)︃−2.5

· e−
D
λ ,

where D is the distance between the Magnetar and the Earth. Neutrons all arrive together at
that time, so none will be arriving nowadays. However, since we consider a uniform and stable
magnetic field without a random component, only the particles that have a specific curvature
radius, so that they are delayed exactly 240 years, will arrive on Earth. This can be computed
by measuring the arc connecting two dots separated by a distance D (see Fig. 7).

path

D

Magnetar Earth

θ

r

Figure 7

Thus, we have Lpath = rθ with θ = 2arcsin D
2r

which for simplicity we will expand as:

θ ≈ 2

(︃
D

2r
+

D3

48r3

)︃
.

Consequently, Lpath = D + D3

24r2
, from which we can extract r =

(︂
D3

24(Lpath−D)

)︂ 1
2
, where Lpath −

D = 240ly. Then we can compute the radius of a particle in a magnetic field:

r(m) =
E[GeV]

0.3 q[eV] B[T]
,
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and from that, after the appropriate unit conversions we receive particles with energy EP =
6.43 · 1018eV for protons and EI = 1.67 · 1020eV for iron nuclei. Then, we can compute the
flux, recalling that only one energy is arriving at this very moment on Earth:

ϕP =
N0P

4πL2

(︃
EP

E0

)︃−2.5

and

ϕI =
N0I

4πL2

(︃
EI

E0

)︃−2.2

.

In order to get the number of events observed by Auger, we can simply multiply the flux
by the surface of Auger and get:

NAuger
P = ϕP · AAuger = 3780

for protons, and:
NAuger

I = ϕI · AAuger = 1

for iron nuclei.

(ii) Kaons can decay in leptons or pions. The most probably decay for the first case is
in muons and muon neutrino (not electron for helicity reasons) and in the second case in two
pions π+π0. In either case we can compute the energy of the daughter particles for in the kaon
rest frame by using the 4-vectors:

pK = (mK , 0⃗), pµ = (Eµ, p⃗), pν = (Eν ,−p⃗)

We can then write pK = pµ + pν and, since the neutrino is massless it’s easier to isolate the
muon and take the squares (pK −pν)

2 = p2µ that gives us m2
K +0−2(mKEν) = m2

µ from which
we can obtain

Eν =
m2

K −m2
µ

2mK

= |p⃗ν | = |p⃗µ|

and consequently

Eµ =
√︂
E2

ν +m2
µ

This is in the rest frame of the kaon, thus we need to convert this to lab reference frame,
for that we apply the Lorentz transformation

E = γK(E
∗ + βKP

∗cosθ∗)

where P is the total momentum of the particle in the CM, theta the angle of emission of the
daughter particle with respect to the direction of the K and γK = EK/mK and βK = pK/EK .
The distribution is isotropic in the CM frame so we expect a flat spectrum of products between
a certain Emin and Emax, which are respectively the two extreme cases when θ∗ = 0◦ and
θ∗ = 180◦.

We get then that Emin
ν ∼ 0GeV and Emax

ν ∼ 954GeV. Neutrinos don’t decay so there’s no
need to compute this part.
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For muons, instead Emin
µ ∼ 46GeV and Emax

µ ∼ 1TeV. Muons can decay and their decay
time in the rest frame is 2.2× 10−6s, from which we can compute that Psurvival = exp(−h/γcτ)
which is about 97% for the minimum muon energy and grows higher for the other ones. So
muons from this decay are most likely to reach the ground.

The case of the decay K+ → π+π0 is very similar. In the kinematics computation the only
difference is that we have no zero-mass particles here, giving as a result

E∗
0 =

m2
K +m2

0 −m2
+

2mk

with the 0 subscript denoting the neutral pion and + the charged one. The result for the
charged pion are symmetric and this way, computing as before the Lorentz boost one gets that
Emax

0 = 913GeV, Emin
0 = 82GeV, Emax

+ = 918GeV and Emin
+ = 85GeV. The mass of π+ and

the mass of π0 can also be approximated as equal.
The large difference, in this case, regards the probability of reaching the ground: The

charged pion decays via weak interaction and has a lifetime of τ+ = 2.5 × 10−8s. while the
neutral one decays via electromagnetic decay and has a lifetime of τ0 = 8.5 × 10−17s making
it for the second one impossible to reach the ground (its decay length is minuscule even if
computed with the maximum possible energy: γmax

0 cτ0 = 1.72 × 10−4 m . For the charged
one, on the other side, the survival probability changes from 11% to 81% in the allowed energy
range, meaning that we can expect part of the pions (mostly the most energetic) to reach the
ground and part of them to decay (mostly the least energetic).

(iii) Let us choose a coordinate system centered at the center of the Earth, where the x̂
axis represents the radial direction and the ŷ axis is perpendicular to x̂ and to ẑ, which is
the North-South direction. Since the motion of the muon can be displayed on the x-y plane,
we will not consider the ẑ axis. The muon begins its life at a point (x0; 0) proceeding in the
negative direction of the x̂ axis (see Fig. 8).

x

y

RE

Nairobi

θ

xN

yN

µ

RE + h

R

Figure 8
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It will be deflected by the magnetic field with a radius of curvature

R[m] =
p[GeV]

0.3 q[eV] B[T]

towards the city of Nairobi (xN ; yN). It is possible to obtain the coordinates of Nairobi in our
system:

(xN ; yN) = (RE cos θ;RE sin θ) ,

where RE is the radius of the Earth and θ is the longitude of Nairobi. It is possible to obtain
the radius of curvature from the geometry of the system :

R =
y2N + (xN − h−RE)

2

2yN
,

from which we can get the momentum of the muon

p[GeV] = 0.3 · q[eV] B[T] R[m] = 32.1GeV .

The survival probability depends on the length actually travelled by the muon, which is

Leff = R · 2 · arctan yN
RE + h− xN

,

from which we can compute

P = exp

(︃
−Leff

γcτ

)︃
≈ 0.2% ,

where mµ = 105 MeV/c2, τ = 2.2 µs and γ = E
m
.
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10 General relativity

Consider a small perturbation of the Minkowski spacetime produced by gravitational waves,
gµν = ηµν + hµν .

i) (0.5 points) Show that, if nµ is a null vector in Minkowski, then the vector sµ =
nµ − 1

2
ηµρhρλn

λ is null in the perturbed metric (always work to O(h)).

ii) (5 points) Let us imagine sµ is the trajectory of a photon emitted at initial frequency
ν0 by a source located at direction n̂ from Earth. Compute, using the geodesic equation
in the TT gauge, the change in the frequency of the photon, (ν(t)− ν0)/ν0, produced by
a monochromatic gravitational wave propagating along the z direction, hµν = hµν(t− z).

iii) (1 point) Generalize the result for an arbitrary direction of propagation of the gravita-
tional wave Ω̂.

iv) (1 point) What happens for Ω̂ · n̂ = 1 (hint: answer this question assuming Ω̂ = ẑ)?

v) (0.5 points) Is the result linear, i.e. additive, for N gravitational waves propagating all
in different directions?

vi) (1 point) Now suppose that gravitational waves have a modified dispersion relation
ω(k) = csk (cs = 1 in General Relativity). How would this new effect manifest in the
gravitational redshift derived above?

vii) (1 point) In a real observation, gravitational waves are not perfectly chromatic. For
example, in a binary system of two object with the same mass m, the frequency f of the
gravitational waves evolves with time as

df

dt
∼ 300

(︃
Gm

c3

)︃
f

11
3 (90)

during the in-spiraling phase. For m = 1011M⊙ and f ∼ 1nHz, estimate how close to
Earth must the source be in order to ignore the frequency evolution of the gravitational
wave.
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Solutions

Throughout this solution we use the (-,+,+,+) signature for the metric tensor.
(i) To O(h) we have:

gµνs
µsν =(ηµν + hµν)(n

µ − 1/2ηµρhρλn
λ)(nµ − 1/2ηνβhβγn

γ) =

=ηµνn
µnν + hµνn

µnν − 2 · 1
2
ηµνη

µρhρλn
λnν = 0

(ii) and (iii) We now want to use the Geodesic Equation to study how the frequency of the
emitted photon ν0 changes as it reaches the Earth at time t, when our detector measures
ν(t). In absence of gravitational waves we would measure ν0 (we are neglecting any possible
expansion of the Universe and other Doppler shifts). In the presence of a gravitational wave,
the Geodesic equation for s0 = ν reads:

dν

dλ
= −Γ0

νρs
νsρ = −Γ0

νρn
νnρ ,

again to O(h). For the background vector nµ we can write nµ = ν(1,−n̂), in the above
equation, which implies, in the TT gauge:

dν

dλ
= −1

2

dhij
dt

ν2n̂in̂j

To proceed further we need to define the direction of propagation of the gravitational waves,
Since we are asked to provide the solution for an arbitrary Ω̂, we will work out this case first,
and then restrict ourselves to a wave propagating in the z-direction. We have

dhij(t− Ω̂ · x⃗)
dλ

=
dt

dλ

∂hij(t− Ω̂ · x⃗)
∂t

+
dΩ̂ · x⃗
dλ

∂hij(t− Ω̂ · x⃗)
∂Ω̂ · x⃗

,

which can be further simplified by noticing that dt
dλ

= ν and that the metric perturbation is a

function of (t− Ω̂ · x⃗), which allow us to arrive at

dhij(t− Ω̂ · x⃗)
dλ

= ν
∂hij
∂t

(︂
1 + Ω̂ · x⃗

)︂
,

where in the last equality we used dx⃗
dλ

= −νn̂ for the incoming photon. The geodesic equation
finally becomes:

dν

dλ
= −1

2

ν

(1 + Ω̂ · n̂)
∂hij
∂λ

n̂in̂j .

To O(h) we can integrate the above equation, then expand the solution to O(h) and finally
obtain

ν(t)− ν0
ν0

=
n̂in̂j

2(1 + Ω̂ · n̂)
∆hij ,

where ∆hij ≡ hij(tp − Ω̂ · x⃗p) − hij(te − Ω̂ · x⃗e) is the difference in the amplitude of the
gravitational wave between the emission time tp and the time it is received on Earth at te.
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For a wave propagating in the z-direction we have Ω̂ = ẑ, the metric perturbations can be
written as

hµν =

⎛⎜⎜⎝
0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

⎞⎟⎟⎠
and

n̂ = −(sin θ cosϕ)x̂− (sin θ sinϕ)ŷ − cos θẑ .

The change in frequency becomes

ν(t)− ν0
ν0

=
sin2 θ

2(1 + cos θ)
[(cos2 ϕ− sin2 ϕ)∆h+ + 2 sinϕ cosϕ∆h×]

which is equal to 0 if cos θ = 1.

(iv) This remains true for Ω̂·n̂ = 1, and it is due to the transverse nature of the gravitational
waves.

(v) Notice that in the above derivation we never had to assume that all gravitational waves
propagate in a single direction, i.e. the result is additive for multiple waves.

(vi) In the case of modified dispersion relation, cs ≡ ω/|⃗k| ≠ 1, the equation of motion for
the propagation of gravitational waves becomes(︃

− 1

c2s

∂2

∂t2
+∇2

)︃
hµν = 0 ,

whose solutions are a function of (t− Ω̂ · x⃗/cs), such that all the result presented above apply
by sending Ω̂ → Ω̂/cs.

(vii) The typical time-scale over the signal evolves for the system presented in the text is
of the order

∆t =
f

df/dt
∼ 1.1kpc/c.

In order to obtain the distance D
D = c∆t =

which gives us a distance of O(kpc).
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