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1. A gentle persuasion
Prof. dr. Wim Beenakker

Radboud University
11 points

1.a [3 p] We start by deriving the Lagrangian of the two point particles, assuming a vanishing
external gravitational energy at 𝑦 = 0 and small oscillations of the pendulums. In
polar coordinates the kinetic energy is given by the usual expression:

𝑇𝑘𝑖𝑛 = 1
2

𝑚𝑙2�̇�2
1 + �̇�2

2

with �̇�1,2 ≡ d𝜑1,2
d𝑡 representing the angular velocities of the two pendulums. The

potential energy due to all gravitational interactions amounts to

𝑉𝑔𝑟𝑎𝑣 = −𝑚g(𝑦1 + 𝑦2) − 𝐺𝑁𝑚2

(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

= − 𝑚g𝑙(cos 𝜑1 + cos 𝜑2) − 𝐺𝑁𝑚2

𝑙(1 + sin 𝜑2 − sin 𝜑1)2 + (cos 𝜑2 − cos 𝜑1)2

with 𝐺𝑁 denoting Newton’s constant. For small oscillations we can expand this up
to second order in the angular displacements:

𝑉𝑔𝑟𝑎𝑣 ≈ −𝑚g𝑙 2 − 1
2

(𝜑2
1 + 𝜑2

2)  − 𝐺𝑁𝑚2

𝑙(1 + 𝜑2 − 𝜑1)

≈ −𝑚g𝑙 2 − 1
2

(𝜑2
1 + 𝜑2

2)  − 𝐺𝑁𝑚2

𝑙
 1 − (𝜑2 − 𝜑1) + (𝜑2 − 𝜑1)2 

The resulting approximated Lagrangian 𝐿 = 𝑇𝑘𝑖𝑛 − 𝑉𝑔𝑟𝑎𝑣 of the system then reads

𝐿(𝜑1, 𝜑2, �̇�1, �̇�2) ≈ 1
2

𝑚𝑙𝑙(�̇�2
1 +�̇�2

2)+(g′ −g)(𝜑2
1 +𝜑2

2)−2g′𝜑1𝜑2 +g′𝜑1 −g′𝜑2 +𝐶

where

g′ = 2𝑚𝐺𝑁
𝑙2

𝐶 = 4g + g′

1.b [1 p] The equations of motion for 𝜑1,2 are obtained from the Lagrangian of part (a)
through the Euler-Lagrange equations:
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d
d𝑡

 ∂𝐿
∂�̇�1

 − ∂𝐿
∂𝜑1

= 0 ⇒ �̈�1 + g
𝑙
𝜑1 − g′

𝑙
(𝜑1 − 𝜑2) − g′

2𝑙
= 0

d
d𝑡

 ∂𝐿
∂�̇�2

 − ∂𝐿
∂𝜑2

= 0 ⇒ �̈�2 + g
𝑙
𝜑2 − g′

𝑙
(𝜑2 − 𝜑1) + g′

2𝑙
= 0

1.c [1 p] Before trying to solve these coupled differential equations, we first determine the
equilibrium angle 𝜀 in terms of g and g′. The equilibrium configuration corresponds
to the conditions �̈�1,2 = �̇�1,2 = 0. From the equations of motion it follows that for
equilibrium

g𝜑eq
1 − g′(𝜑eq

1 − 𝜑eq
2 ) = g′⁄2

g𝜑eq
2 + g′(𝜑eq

1 − 𝜑eq
2 ) = −g′⁄2

⇒ 𝜀 ≡ 𝜑eq
1 = −𝜑eq

2 = g′

2g − 4g′

1.d [3 p] The eigenmodes of the system are obtained by considering the angular variables
𝜑± ≡ 𝜑1 − 𝜀 ± (𝜑2 + 𝜀), for which the equations of motion decouple according to

�̈�+ = − g
𝑙
𝜑+ ≡ −𝜔2

+𝜑+

�̈�− = − g − 2g′

𝑙
𝜑− ≡ −𝜔2

−𝜑−

1.e [3 p] Now we can solve the equations of motion given the initial conditions at time 𝑡 = 0

𝜑1(0) = 𝜀 + 𝜑0

𝜑2(0) = −𝜀
�̇�1(0) = �̇�2(0) = 0

which is equivalent to

𝜑±(0) = 𝜑0

�̇�±(0) = 0

The solutions are trivially given by

𝜑±(𝑡) = 𝜑0 cos(𝜔±𝑡).

Introducing

�̄� ≡
𝜔+ + 𝜔−

2

Δ𝜔 ≡
𝜔+ − 𝜔−

2
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we obtain the following solutions for each of the pendulums:

𝜑1(𝑡) = 𝜀 + 𝜑0
2

 cos(𝜔+𝑡) + cos(𝜔−𝑡) = 𝜀 + 𝜑0 cos(�̄�𝑡) cos(Δ𝜔𝑡)

𝜑2(𝑡) = −𝜀 + 𝜑0
2

 cos(𝜔+𝑡) − cos(𝜔−𝑡) = −𝜀 − 𝜑0 sin(�̄�𝑡) sin(Δ𝜔𝑡)

If g′ ≪ g, then �̄� ≈ g⁄𝑙 and Δ𝜔 ≈ 𝜀g⁄𝑙 with 𝜀 ≈ g′⁄(2g) ≪ 1. Therefore,
initially only the first pendulum is swinging and bit by bit energy is being transferred
gravitationally to the second pendulum, until at time 𝑡 = 𝜋⁄(2Δ𝜔) the situation is
completely reversed and only the second pendulum is swinging.

Let’s plug in the following numerical input: 𝑚 = 1 kg, 𝑙 = 1 m, g = 9.81 m s−2

and 𝐺𝑁 = 6.67 × 10−11m3 kg−1 s−2. In that case the switch will take place in
approximately 𝜋⁄(2Δ𝜔) ≈ 𝜋

√
g𝑙⁄g′ = 𝜋g𝑙5⁄(2𝑚𝐺𝑁) = 7.38 × 1010 s = 2334

years!
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2. Optical Cavities: The Fabry-Perot
Etalon

Dr. Nandini Bhattacharya
TU Delft
8 points

2.a [0.5 p] Using Snell’s law twice, we find 𝜃𝑒 = 𝜃𝑖:

sin 𝜃𝑖
sin 𝜃𝑡

= 𝑛𝑡
𝑛𝑖

= 𝑛
1

= 𝑛

sin 𝜃𝑡
sin 𝜃𝑒

= 𝑛𝑒
𝑛𝑡

= 1
𝑛

Substituting sin 𝜃𝑡:

sin 𝜃𝑡 = sin 𝜃𝑒
1
𝑛

𝑛 = sin 𝜃𝑖
sin 𝜃𝑡

= sin 𝜃𝑖
sin 𝜃𝑒

1
𝑛

sin 𝜃𝑖 = sin 𝜃𝑒 ⇒ 𝜃𝑒 = 𝜃𝑖

2.b [1 p] The phase difference 𝛿 = 𝑘Δ where Δ is the optical path length difference (OPD).
Δ = 2𝑛𝑙 cos 𝜃𝑡. The OPD between two reflected beams (as seen in Figure 2.1) is
given by:

𝑂𝑃𝐷 = ab + bc − ad
ab = bc
ab + bc = 2nl

cos 𝜃t

ad = ac sin 𝜃i
ac
2 = sin 𝜃𝑡

ab = 𝑛𝑙 sin 𝜃𝑡
cos 𝜃𝑡

sin 𝜃𝑖 = 𝑛 sin 𝜃𝑡

ad = 2nl sin2 𝜃t
cos 𝜃t

Therefore the OPD = 2𝑛𝑙−2𝑛𝑙 sin2 𝜃𝑡
cos 𝜃𝑡

= 2𝑛𝑙(1−sin2 𝜃𝑡)
cos 𝜃𝑡

= 2𝑛𝑙 cos2 𝜃𝑡
cos 𝜃𝑡

OPD = 2𝑛𝑙 cos 𝜃𝑡
For constructive interference OPD = 2𝑛𝑙 cos 𝜃𝑡 = 2𝑚𝜋 where m is an integer num-
ber.
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Figure 2.1 Optical path length
difference for reflected light

2.c [1 p] • The incident ray build up of the reflected and transmitted rays is shown in
Figure 2.2a

• The Stokes Relation figure considering all rays is shown in Figure 2.2b

In both figures, r’ and t’ denote the reflection and transmission coefficients when
the ray is incident from the medium (so originating from 𝑡𝐸𝑖).

2.d [1 p] To build up the incident ray in Figure 2.1:
𝐸𝑖 = (𝑟2 + 𝑡′𝑡)𝐸𝑖
and for the reflected ray in the medium (non-existant in the original figure) in
Figure 2.2a:
0 = (𝑟′𝑡 + 𝑡𝑟)𝐸𝑖
thus we get
𝑡𝑡′ = 1 − 𝑟2

𝑟 = −𝑟′.
There is a 𝜋 phase change for every reflection in the second media.

2.e [1.5 p] The total transmitted amplitude can be written as

𝐸𝑡𝑟 =
∞


𝑚=1

𝐸𝑒m

= 𝑡𝑡′𝐸𝑖𝑛 + 𝑟𝑟′𝑒𝑖𝛿𝑡𝑡′𝐸𝑖𝑛 + (𝑟𝑟′)2𝑒2𝑖𝛿𝑡𝑡′𝐸𝑖𝑛 + ... = 𝑡𝑡′𝐸𝑖𝑛1 + 𝑟𝑟′𝑒𝑖𝛿 + (𝑟𝑟′)2𝑒2𝑖𝛿 + ...

= 𝑡𝑡′𝐸𝑖𝑛

∞

𝑗=1

𝑟𝑟′𝑒𝑖𝛿𝑗
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(a) Reflection and transmission at
an interface between two media
with different refractive indices

reversed to build up the incident ray.

(b) Reflection and transmission at
an interface between two media

with different refractive indices used
for deriving the Stokes relations.

Figure 2.2

using the summation of geometric series

𝐸𝑡𝑟 = 𝑡𝑡′𝐸𝑖𝑛
1 − 𝑟𝑟′𝑒𝑖𝛿

2.f [1 p] Taking the modulus of the amplitude expression obtained above we get

𝐼𝑡𝑟 = |𝐸𝑡𝑟|2 = 𝑡𝑡′𝐸𝑖𝑛
1 − 𝑟𝑟′𝑒𝑖𝛿 ⋅

𝑡𝑡′𝐸∗
𝑖𝑛

1 − 𝑟𝑟′𝑒−𝑖𝛿

= |𝐸𝑖𝑛|2 𝑡2𝑡′2

(1 − 𝑟𝑟′𝑒𝑖𝛿)(1 − 𝑟𝑟′𝑒−𝑖𝛿)

= 𝐼𝑖𝑛
𝑇 𝑇 ′

1 + 𝑅𝑅′ − 2
√

𝑅𝑅′ cos 𝛿

where we have used 𝑇 = 𝑡2, 𝑇 ′ = 𝑡′2, 𝑅 = 𝑟2, 𝑅′ = 𝑟′2, 𝑒𝑖𝑥 + 𝑒−𝑖𝑥 = 2 cos 𝑥

2.g [0.5 p] For energy conservation 𝑅 + 𝑇 = 1.

2.h [1 p] The fringes are a group of concentric rings called the Airy’s rings.

2.i [0.5 p] One would see two concentric patterns corresponding to each wavelength and having
the amplitude of each of the wavelengths.



24 February 2017

8
+– 0

PION

2017

3. Long range molecular interactions
Arthur Christianen
PION winner 2016

11 points

3.a [1 p] The Pauli exchange interaction term is given by:

𝐾 = ⟨𝜓𝐴|�̂�|𝜓𝐵⟩

Both molecular wave functions decay exponentially so also the exchange integral will
decay exponentially. The electrostatic potential decays with a power of R, meaning
that this becomes much larger than the exchange interaction.

3.b [3 p] The electrostatic potential energy between the two molecules is given by:

𝑉 = 
𝑖


𝑗

𝑞𝑖𝑞𝑗

𝐑 + (𝐫𝐣 − 𝐫𝐢)

𝑉 = 
𝑖


𝑗

𝑞𝑖𝑞𝑗

(𝑅 + (𝑟𝑗,𝑧 − 𝑟𝑖,𝑧))2 + (𝑟𝑗,𝑥 − 𝑟𝑖,𝑥)2 + (𝑟𝑗,𝑦 − 𝑟𝑖,𝑦)2

𝑉 = 
𝑖


𝑗

𝑞𝑖𝑞𝑗

𝑅2 + 2𝑅(𝑟𝑗,𝑧 − 𝑟𝑖,𝑧) + (𝑟𝑗,𝑧 − 𝑟𝑖,𝑧)2 + (𝑟𝑗,𝑥 − 𝑟𝑖,𝑥)2 + (𝑟𝑗,𝑦 − 𝑟𝑖,𝑦)2

Now use the Taylor approximation:

1
(1 + 𝑥)

≈ 1 − 𝑥
2

+ 3𝑥2

2

Only take into account terms with powers of R of -3 or higher:



24 February 2017

9
+– 0

PION

2017

𝑉 = 
𝑖


𝑗

𝑞𝑖𝑞𝑗(1 − (𝑟𝑗,𝑧−𝑟𝑖,𝑧)
𝑅 − |𝑟|2

2𝑅2 + 3(𝑟𝑗,𝑧−𝑟𝑖,𝑧)2

2𝑅2 )
𝑅

𝑉 = 
𝑖


𝑗

𝑞𝑖𝑞𝑗

𝑅
− 

𝑖


𝑗

𝑞𝑖𝑞𝑗(𝑟𝑗,𝑧 − 𝑟𝑖,𝑧)
𝑅2 +

1
2


𝑖


𝑗

𝑞𝑖𝑞𝑗(2(𝑟𝑗,𝑧 − 𝑟𝑖,𝑧)2 − (𝑟𝑗,𝑥 − 𝑟𝑖,𝑥)2 − (𝑟𝑗,𝑦 − 𝑟𝑖,𝑦)2)
𝑅3

𝑉 =
∑𝑖 𝑞𝑖 ∑𝑗 𝑞𝑗

𝑅
+

∑𝑖 𝑞𝑖𝑟𝑖,𝑧 ∑𝑗 𝑞𝑗

𝑅2 −
∑𝑖 𝑞𝑖 ∑𝑗 𝑞𝑗𝑟𝑗,𝑧

𝑅2 +

1
2


𝑖


𝑗

𝑞𝑖𝑞𝑗(3(𝑟2
𝑗,𝑧 + 𝑟2

𝑖,𝑧) − |𝐫𝐣|𝟐 − |𝐫𝐢|𝟐 − 𝟐𝐫𝐣,𝐳𝐫𝐢,𝐳 + 𝐫𝐣,𝐱𝐫𝐢,𝐱 + 𝐫𝐣,𝐲𝐫𝐢,𝐲)
𝑅3

Using the definitions of the dipole moment ∑𝑖 𝑞𝑖𝑟𝑖 and the quadrupole moment,
this expression becomes:

𝑉 (𝑅) = 𝑞𝐴𝑞𝐵
𝑅

+
𝑞𝐵𝜇𝐴,𝑧 − 𝑞𝐴𝜇𝐵,𝑧

𝑅2 +
2𝑞𝐴𝑄𝐵,𝑧𝑧 + 2𝑞𝐵𝑄𝐴,𝑧𝑧 + 𝜇𝐴𝐓𝝁𝐁

𝑅3

3.c [2 p] The first order energy correction is given by:

𝐸 (1)
0 = ⟨𝜓(0)

𝐴,0𝜓(0)
𝐵,0| 𝑞𝐵

𝑅2 𝜇𝐴,𝑧|𝜓(0)
𝐴,0𝜓(0)

𝐵,0⟩

𝐸 (1)
0 = 𝑞𝐵

𝑅2 ⟨𝜓(0)
𝐵,0|𝜓(0)

𝐵,0⟩⟨𝜓(0)
𝐴,0|𝜇𝐴,𝑧|𝜓(0)

𝐴,0⟩

𝐸 (1)
0 = 𝑞𝐵

𝑅2 ⟨𝜓(0)
𝐴,0|𝜇𝐴,𝑧|𝜓(0)

𝐴,0⟩

The matrix element of the dipole moment operator is the quantum mechanical ex-
pectation value of the dipole moment. This term is therefore exactly the classical
term.

𝐸 (2)
0 =

𝑞 2
𝐵

𝑅4 
𝑚>0

|⟨𝜓(0)
𝐴,0|𝜇𝐴,𝑧|𝜓(0)

𝐴,𝑚⟩|2

𝐸 (0)
𝐴,0 − 𝐸 (0)

𝐴,𝑚

So this gives a value of 𝛼𝐴,𝑧𝑧 of:

𝛼𝐴,𝑧𝑧 = 2 
𝑚>0

|⟨𝜓(0)
𝐴,0|𝜇𝐴,𝑧|𝜓(0)

𝐴,𝑚⟩|2

𝐸 (0)
𝐴,𝑚 − 𝐸 (0)

𝐴,0
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This 𝛼𝐴,𝑧𝑧 is the zz-component of the polarizability tensor. The second order energy
correction gives the interaction between the charge and the induced dipole moment.

3.d [3 p] The first order energy correction is given by:

𝐸 (1)
0 = ⟨𝜓(0)

𝐴,0𝜓(0)
𝐵,0| �̂�𝐴𝐓�̂�𝐁

𝑅3 |𝜓(0)
𝐴,0𝜓(0)

𝐵,0⟩

T does not act on the wave functions. Again this terms with wave function A and
B can be separated. This gives:

𝐸 (1)
0 = 1

𝑅3 ⟨𝜓(0)
𝐴,0|�̂�𝐴|𝜓(0)

𝐴,0⟩𝐓⟨𝝍(𝟎)
𝐁,𝟎|�̂�𝐁|𝜓(0)

𝐵,0⟩

This is again exactly the classical expression, where the expectation values of the
dipole moments replace the classical dipole moments. The second order energy
corrections are now given by:

𝐸 (2)
0 = 

𝑛,𝑚,𝑛+𝑚>0

|𝜓(0)
𝐴,0𝜓(0)

𝐵,0| �̂�𝐴 𝐓�̂�𝐁
𝑅3 |𝜓(0)

𝐴,𝑚𝜓(0)
𝐵,𝑛|2

𝐸 (0)
𝐴,0 + 𝐸 (0)

𝐵,0 − 𝐸 (0)
𝐴,𝑚 − 𝐸 (0)

𝐵,𝑛

𝐸 (2)
0 = 1

𝑅6 
𝑛,𝑚,𝑛+𝑚>0

|⟨𝜓(0)
𝐴,0|�̂�𝐴|𝜓(0)

𝐴,𝑚⟩𝐓⟨𝝍(𝟎)
𝐁,𝟎|�̂�𝐁|𝜓(0)

𝐵,𝑛⟩|2

𝐸 (0)
𝐴,0 + 𝐸 (0)

𝐵,0 − 𝐸 (0)
𝐴,𝑚 − 𝐸 (0)

𝐵,𝑛

This can be separated into three terms by splitting up the sum. Two terms are
acquired by setting m or n to 0. The third terms is the remaining term where both
m and n are nonzero.

If m or n is set to 0:

𝐸 (2)
0 = 1

𝑅6 
𝑚

|⟨𝜓(0)
𝐴,0|�̂�𝐴|𝜓(0)

𝐴,𝑚⟩𝐓⟨𝝍(𝟎)
𝐁,𝟎|�̂�𝐁|𝜓(0)

𝐵,0⟩|2

𝐸 (0)
𝐴,0 − 𝐸 (0)

𝐴,𝑚

This reduces to a term with the polarizability of molecule A and the dipole moment
of molecule B. This is therefore the interaction of the dipole moment and the induced
dipole moment.

If m and n are both nonzero than the terms of molecules A and B remain mixed.
This is a purely quantum mechanical interaction which has no classical equivalent.
This interaction term is called the dispersion interaction or VanderWaals interaction!
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3.e [2 p] • The major interaction here is the charge-induced dipole interaction, which goes
with 𝑅−4.

• The major interaction here is the dispersion interaction, which goes with 𝑅−6.

• Benzene has no charge or a dipole moment but it does have a quadrupole mo-
ment. The quadrupole-quadrupole interaction is the most important, going with
𝑅−5. This could be found out by extrapolating formula (1) further to higher
powers of 𝑅−6

• The major interaction here is a dipole-dipole interaction, which goes with 𝑅−3
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4. Cesium hyperfine structure and
atomic clocks

Prof. dr. Steven Hoekstra and Kevin Esajas, MSc
University of Groningen

12 points

4.a [2 p] Cs is a Alkali metal. The Alkali atoms (first column of the period table) are
effectively single electron systems. The valence electron can be excited from the s
orbital in the ground state to an excited p orbital (B). This level has a different
energy from the ground state due to the imperfect screening of the multiply
charged nucleus in Cs by the other electrons, called the quantum defect. This
excited state itself is split into two levels due to the spin-orbit interaction (C)
(also called fine structure). By closer inspection we see that the ground state is
further split due to the coupling with the nuclear spin (A). Also the electronically
excited states show hyperfine structure.

To determine the relative magnitudes of these splittings, we can start with split-
ting A, which is given in the question to be about 9 GHz, so order 1010 Hz.
The spin-orbit splitting is a factor of about 𝜇𝐵⁄𝜇𝑁 larger, which is about 2000
(1836). This gives for splitting C a magnitude of 1013 Hz. The electronic tran-
sition for all Alkali atoms is in the optical (remember the yellow Sodium street
lamps), corresponding to a frequency of 1014 to 1015 Hz.
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Energy Physical mechanism giving Energy splitting size,

splitting rise to splitting order of magnitude n

(in 10𝑛 Hz)

A Electronically excited state. Difference in 𝑛 = 14 − 15

energy between the valence electron in the s

and p orbital, due to the quantum defect.

B Finestructure: coupling of electron magnetic 𝑛 = 13

moment due to spin withmagnetic moment

due to orbital angular momentum.

C Hyperfinestructure: coupling of total 𝑛 = 10

angular momentum withthe magnetic

moment of nuclear spin.

4.b [3 p] − The ground state, because it has a single electron in an s orbital, has orbital
angular momentum 𝐿 = 0. Because 𝑆 = 1

2 . 𝐽 = 𝐿+𝑆 = 1
2 . Since the nuclear

spin 𝐼 = 7⁄2, this leads to two hyperfine levels with quantum numbers 𝐹 = 3
and 𝐹 = 4. With aid of the given formula, we first find 𝑔𝐽 , and from that the
two 𝑔𝐹 values: 𝑔𝐽 = 2 ⇒ 𝑔𝐹=3 = −1

4 ; 𝑔𝐹=4 = 1
4 . For the two hyperfine states

the Zeeman shifts are thus given by 𝜇𝐵𝑚𝐹 𝑔𝐹 𝐵𝑧 = 1
4𝑚𝐹 𝜇𝐵𝐵𝑧 for the F=4

level, and −1
4𝑚𝐹 𝜇𝐵𝐵𝑧 for the F=3 level. The difference in energy between

neighbouring hyperfine 𝑚𝐹 levels is thus 1
4𝜇𝐵𝐵𝑧.

− In a weak magnetic field the energy levels 𝑚𝐹 splitted from hyperfine level 𝐹
are given by: −𝐹 ≤ 𝑚𝐹 ≤ 𝐹 . So there will be 2𝐹 + 1 splitted levels for each
hyperfine level. In a strong magnetic field 𝐽 and 𝐼 are decoupled and the
hyperfine structure is just a perturbation on the splitting due to the electron
spin. The states at low magnetic field labelled by 𝑚𝐹 , now correspond to
states with 𝑚𝐽 and 𝑚𝐼 , where 𝑚𝐽 = ±1

2 and −7⁄2 ≤ 𝑚𝐼 ≤ 7⁄2, so there
are 2𝐼 + 1 = 8 sublevels levels for the two possible values of 𝑚𝐽 .

Weak magnetic field Strong magnetic field

Higher group of energy levels # levels = 2𝐹 + 1 = 9 # levels = 2𝐼 + 1 = 8

Lower group of energy levels # levels = 2𝐹 + 1 = 7 # levels = 2𝐼 + 1 = 8
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4.c [3 p] The magnetic force on the atoms is in strong fields proportional to −∂𝐵
∂𝑧 𝑚𝐽 . The

atoms with 𝑚𝐽 = 1
2 are forced in the direction of decreasing magnetic field 𝐵

and atoms with 𝑚𝐽 = −1
2 are forced in the direction of increasing magnetic field.

These are so called low field seeking and high field seeking states respectively.

The energy levels of the atoms correspond to different orientations of the electron
spins with respect to the local magnetic field. If the magnetic field changes, the
spins of the atoms tend to remain in the same relative orientation (ie. the same
quantum state). This means that the atoms will usually rotate along with the
magnetic field when it changes direction. This is what is meant by the adiabatic
condition: the magnetic field change is sufficiently slow so that the atoms can
follow.

Atoms in low-field seeking states will remain in low-field seeking states and thus
deflect towards lower field strengths (and vice versa), regardless of the direction
of the magnetic field.

x

z

(A) (B) (C) (D)

Magnets:

=N

=S

(E)

Figure 4.1

A sketch of the field lines can be used to find the high and low field regions in
the indicated magnet configurations: the magnetic field is strong where the lines
lie close together and weak where they are far apart. (A) causes no deflection
(only the potential energy and thus the velocity of the atoms is changed). (B)
and (C) cause a vertical deflection. (D) has a focusing or defocusing effect. (E)
causes a deflection with both a horizontal and a vertical component.

y

z

(A) (B) (C) (D) (E)

A

B

Figure 4.2
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4.d [4 p] (1).
The oven produces beams of Cs-133 atoms in the electronic ground states, so it
is not hyperfine-state selective, atoms in all hyperfine states (3, 𝑚𝐹 ) and (4, 𝑚𝐹 )
are produced.

(2).
In the strong magnetic field regime, 𝐼 and 𝐽 are decoupled and 𝑚𝐹 = 𝑚𝐽 +𝑚𝐼 .
A strong magnet seperates the beam based on 𝐽 = 𝐿 + 𝑆 = 1

2 . Two beams
corresponding to 𝑚𝑗 = ±1

2 emerge after the magnets. From the geometry of
the magnets we see that the magnetic field strength decreases in the positive
z-direction, this means that only the atoms in the high field seeking states (𝑚𝐽 =
−1

2) reach location 2. Since no level crossings are allowed for the atoms with
𝐹 = 3 these are all the 𝑚𝐹 states, while for 𝐹 = 4 only the 𝑚𝐹 = −4 qualifies.
Thus the resulting atomic states are (3, 𝑚𝐹 ) and (4, −4)

(3).
The microwave field drives the transition (3, 0) → (4, 0), so after this field the
resulting states are: (3, −3), (3, −2), (3, −1), (4, 0), (3, 1), (3, 2), (3, 3), (4, −4)

(4).
Considering the geometry of the magnets again, only the atoms in low field
seeking states arrive at this location. So only atoms in state (4, 0).

Location (1) (2) (3) (4)

(F, 𝑚𝐹 ) (3,𝑚𝐹 ) (3,𝑚𝐹 ) (3,-3),(3,-2),(3,-1),(4,0), (4,0)

(4,𝑚𝐹 ) (4,-4) (3,1),(3,2),(3,3),(4,-4)
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5. Some beer physics
Dr. Arie van Houselt
University of Twente

10 points

5.a [3 p] When the surface of separation undergoes an infinitesimal displacement, the
length of a segment of the normal lying between the displaced and undisplaced
surface is 𝛿𝑙.

A volume element between the two surfaces is then given by 𝛿𝑙dA, with dA a
surface element. With 𝑝1 and 𝑝2 the pressures in the two media, the work needed
for the change in volume is

 (−𝑝1 + 𝑝2)𝛿𝑙dA

The work needed to change the surface area is proportional to the change 𝛿𝐴 in
surface area and is given by 𝛾𝛿𝐴, with 𝛾 the surface tension. In equilibrium the
total work

𝛿𝑊 = −  (𝑝1 − 𝑝2)𝛿𝑙dA + 𝛾𝛿A = 0

With 𝑟′ and 𝑟″ are the principal radii of curvature at a given point of the surface,
the arc differentials dA′ and dA″ on the surface in its principal curvature sections
are increased to

dA′ → dA′(r′ + 𝛿l)
r′ = dA′1 + 𝛿l

r′ 

and

dA″ → dA″(r″ + 𝛿l)
r″ = dA″1 + 𝛿l

r″ 

Hence a surface element dA = dA′dA″ becomes after displacement:

dAnew = dA′1 + 𝛿l
r′ dA″1 + 𝛿l

r″ ≈ dA1 + 𝛿l
r′ + 𝛿l

r″ 

thus it changes by

Δ𝐴 = 𝛿𝑙dA 1
r′ + 1

r″ 

The total change in area for the surface of separation is thus:
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𝛿𝐴 =  𝛿𝑙 1
𝑟′ + 1

𝑟″ dA

Hence we obtain for equilibrium:

 𝛿𝑙(𝑝1 − 𝑝2) − 𝛾 1
𝑟′ + 1

𝑟″ dA

Since this must hold for every δl, the expression between brackets must equal
zero:

𝛿𝑃 = 𝛾 1
𝑟′ + 1

𝑟″ 

5.b [2 p] See the sketch in Figure 5.1.

Figure 5.1

The indicated angle equals 𝜃. So

cos 𝜃 =
ℎ
2
𝑟2

𝑟2 = ℎ
2 cos 𝜃

Use the Laplace equation

Δ𝑃 = 𝛾 1
𝑟′ + 1

𝑟″ 

with r’= 𝑟1 = 3cm; r’’ = −𝑟2 = − ℎ
2 cos 𝜃 . Thus

Δ𝑃 = 𝛾 1
𝑟1

− 2 cos 𝜃
ℎ



The cappilary force 𝐹𝑐 equals Δ𝑃 ×𝜋𝑟2
1 , which should balance 𝐹𝑔 = −𝑚𝑔. Thus
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Δ𝑃 = 𝛾 1
𝑟1

− 2 cos 𝜃
ℎ

 = − 𝑚𝑔
𝜋𝑟2

1

1
𝑟1

− 2 cos 𝜃
ℎ

= − 𝑚𝑔
𝛾𝜋𝑟2

1

− 2 cos 𝜃
ℎ

= − 𝑚𝑔
𝛾𝜋𝑟2

1
− 1

𝑟1
= −𝑚𝑔 + 𝛾𝜋1

𝛾𝜋𝑟2
1

ℎ =
2𝛾𝜋𝑟2

1 cos 𝜃
𝑚𝑔 + 𝛾𝜋𝑟1

= 9.13 × 10−4𝑚 ≈ 1𝑚𝑚

5.c [1 p] The presence of these proteins will lower the surface tension. Keeping the Laplace
pressure the same, h must decrease to balance the reduced surface tension ⇒
maximum film thickness reduces. Alternatively: the surface tension changes the
numerater in the formula derived in a more drastically than the denominator,
hence h will decrease.

5.d [3 p] B is formed in a one-to-one ratio from A, and similarly C from B, thus:

dB
dt

= 𝑘1𝐴 − 𝑘2

To find A:
𝐴𝑡


𝐴0

1
𝐴

dA = −k1

t


0

dt

ln 𝐴 − ln 𝐴0 = ln 𝐴
𝐴0

= −𝑘1𝑡

𝐴(𝑡) = 𝐴0𝑒−𝑘1𝑡

To find B:
𝐵


0

1dB′ = k1

t


0

A(t′)dt′ − k2

t


0

dt′

= 𝑘1𝐴0

𝑡


0

𝑒−𝑘1𝑡′dt′ − k2

t


0

dt

𝐵 = 𝑘1𝐴0𝑒−𝑘1𝑡′

−𝑘1
𝑡
0

− 𝑘2𝑡 = −𝐴0𝑒−𝑘1𝑡 − 1 − 𝑘2𝑡

𝐵 = 𝐴01 − 𝑒−𝑘1𝑡 − 𝑘2𝑡
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Or find B using 𝐴0 = 𝐴 + 𝐵 + 𝐶 and 𝐴 = 𝐴0𝑒−𝑘1𝑡, 𝐶 = 𝑘2𝑡

At time 𝑡𝑚:

dB
dt

= 0

d
dt

𝐴01 − 𝑒−𝑘1𝑡 − 𝑘2𝑡
𝑡=𝑡𝑚

= 𝐴0𝑘1𝑒−𝑘1𝑡𝑚 − 𝑘2 = 0

𝑒−𝑘1𝑡𝑚 = 𝑘2
𝐴0𝑘1

⇒ −𝑘1𝑡𝑚 = ln 𝑘2
𝐴0𝑘1

𝑡𝑚 = 1
𝑘1

ln 𝐴0𝑘1
𝑘2

At this time, the amount of A is given by:

𝐴(𝑡 = 𝑡𝑚) = 𝐴0𝑒−𝑘1𝑡𝑚 = 𝐴0𝑒−𝑘1
1

𝑘1
ln 𝐴0𝑘1

𝑘2

= 𝐴0𝑒ln 𝑘2
𝐴0𝑘1 = 𝐴0

𝑘2
𝐴0𝑘1

𝐴(𝑡 = 𝑡𝑚) = 𝑘2
𝑘1

5.e [1 p] For a zero order reaction (constant reaction rate) the reactants disappear lin-
early with time. Only the first 25 min (≈7 % of the total reaction time) are
nonlinear, (with an amount of B lower than in a first order extrapolation) thus
the assumption of a first order process was justified.
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6. Dark Matter and Gravitational Lens-
ing

Dr. Søren Larsen
Radboud University

10 points

6.a [2 p] − Mass distribution in the galaxy: For circular velocity 𝑣, the mass 𝑀 within
a radius 𝑅 is

𝑀(𝑅) = 𝑣2𝑅
𝐺

This follows from the acceleration in circular motion

𝑎 = 𝑣2

𝑅
which must be equal to the acceleration on a test particle due to the gravity
of the central mass

𝐹 = 𝑚𝑎 = 𝐺𝑀𝑚
𝑅2

so

𝑎 = 𝐺 𝑀
𝑅2

That is

𝑣2

𝑅
= 𝐺 𝑀

𝑅2

so

𝑀 = 𝑣2𝑅
𝐺

So if 𝑣 is independent of 𝑅, then we have that 𝑀 ∝ 𝑅.

− The mass of the halo is:

𝑀(𝑅) = 𝑣2𝑅
𝐺

Thus the derivative of the density is
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dM
dR

= 𝑣2

𝐺
so the amount matter in a thin shell of thickness dR is

dM = v2

G
dR

For density 𝜌(𝑅), we also have

dM = 4𝜋R2𝜌 dR

and therefore
𝑣2

𝐺
= 4𝜋𝑅2𝜌

so that

𝜌(𝑅) = 𝑣2

4𝜋𝐺𝑅2

6.b [3 p] The classical calculation gives the acceleration of the photon as

𝑎 = 𝐺𝑀𝐿
𝑟2

The perpendicular component of 𝑎 is

𝑎⊥ = 𝑎𝑟min
𝑟

= 𝐺𝑀𝐿𝑟min
𝑟3

We have

𝑟2 = 𝑟2
min + 𝑑2

= 𝑟2
min + (𝑐𝑡)2

so

𝑎⊥ = 𝐺𝑀𝐿𝑟min
(𝑟2

min + (ct)2)3⁄2

The perpendicular velocity acquired is then

𝑣⊥ =
∞


−∞

𝑎⊥dt

=
∞


−∞

𝐺𝑀𝐿𝑟min
(𝑟2

min + (ct)2)3⁄2 dt
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We use the hint:

 1
(𝑎 + 𝑏𝑥2)3⁄2 dx = x

a
√

a + bx2

with 𝑎 = 𝑟2
min and 𝑏 = 𝑐2 and find

𝑣⊥ = 𝐺𝑀𝐿𝑟min
t

r2
minr2

min + c2t2


t=∞

t=−∞

= 2𝐺𝑀𝐿
𝑐𝑟min

so the angle is

𝛼 = 𝑣⊥
𝑐

= 2𝐺𝑀𝐿
𝑟minc2

6.c [2 p] If 𝐷𝑆𝐿 ≫ 𝐷𝐿𝑂 then the light rays from the star can be considered parallel until
they get deflected, so the radius of the Einstein ring is equal to the deflection
angle, 𝛼 = 𝜃𝐸. Then

𝜃𝐸 = 4𝐺𝑀𝐿
𝑟minc2

Assume that deflection occurs instantaneously near 𝐿; then we have

𝑟min = 𝜃EDLO

Then

𝜃𝐸 = 4𝐺𝑀𝐿
𝜃𝐸𝐷𝐿𝑂𝑐2

so

𝜃2
𝐸 = 4𝐺𝑀𝐿

𝐷𝐿𝑂𝑐2

6.d [2 p] If the mass of a single MACHO is 𝑀𝐿 and the mass of the halo is 𝑀𝐻 , then the
number of MACHOS is

𝑁 = 𝑀𝐻⁄𝑀𝐿

Each MACHO has an Einstein ring with area

𝐴𝐸 = 𝜋𝜃2
𝐸 = 4𝜋𝐺𝑀𝐿

𝐷𝐿𝑂𝑐2
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so the total area of all Einstein rings is

𝐴tot = NAE = MH
ML

4𝜋GML
DLOc2

= 4𝜋𝐺𝑀𝐻
𝐷𝐿𝑂𝑐2

The sky has a total area of 4𝜋 sr, so the optical depth is

𝜏𝐿 = 𝐺𝑀𝐻
𝐷𝐿𝑂𝑐2

which is indeed independent of 𝑀𝐿. Filling in 𝑀𝐻 = 4 × 1011𝑀⊙ ≈ 8 × 1041 kg
and 𝑑 = 104 pc ≈ 3 × 1020 m, we get 𝜏𝐿 = 1.9 × 10−6.

6.e [1 p] The angular velocity is 𝑣𝜃 = 𝑣⁄𝐷𝐿𝑂. Hence, the time to move across the
Einstein ring is

𝑡 = 2𝜃𝐸⁄𝑣𝜃

= 2𝐷𝐿𝑂
𝑣

2 𝐺𝑀𝐿
𝐷𝐿𝑂𝑐2

= 4𝐷𝐿𝑂𝐺𝑀𝐿
𝑣2𝑐2

For 𝑀𝐿 = 1𝑀⊙, 𝑑 = 104 pc = 3.08 × 1020 m, and 𝑣 = 2 × 105 m/s, we get
𝑡 = 1.35 × 107 s = 156 days.

Constants:

1 pc = 3.08 × 1016 m
Speed of light: 𝑐 = 3 × 108 m s−1

Gravitational constant: G = 6.673 × 10−11 m3 kg−1 s−2

1 M⊙ = 1.989 × 1030 kg
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7. Superelectrodynamics
Dr. Alix McCollam
Radboud University

10 points

7.a [2 p] The emf in the 𝑅𝐿 circuit of Figure 2 is

𝜀 = 𝐼𝑅 + 𝐿𝑑𝐼
𝑑𝑡

In a constant magnetic field, no current flows in the circuit and so 𝜀 = 0.
However, when the field is switched off, the magnetic flux threading the cir-
cuit changes and an emf is induced according to the flux rule. If 𝑅 = 0, as for
the superconducting ring, then

𝜀 = −𝑑𝜙
𝑑𝑡

= −
𝑑(∮ 𝐁 ⋅ 𝑑𝐚)

𝑑𝑡
= −𝐴𝑑𝐵

𝑑𝑡
= 𝐿𝑑𝐼

𝑑𝑡

where 𝐁 is the magnetic field and A is the area of the circuit loop (ring) per-
pendicular to the field direction.

⇒ 𝐿 𝑑𝐼
𝑑𝑇

+ 𝐴𝑑𝐵
𝑑𝑡

= 0

and integrating with respect to time gives

𝐿𝐼 + 𝐴𝐵 = constant. (7.1)

𝐿𝐼 +𝐴𝐵 is the total magnetic flux threading the circuit (ring) and Equation 7.1
shows that if 𝐵 decreases, 𝐼 will increase to exactly compensate the change in
flux, and vice versa.

7.b [1.5 p] In a perfect conductor, the equation of motion for electrons gives

𝐄 = −𝑚𝑒
𝑒

∂𝐯
∂𝑡

. (7.2)

(𝜏 → ∞ means that the final term in equation (1) is zero.) The time derivative
of the current density is

∂𝐉
∂𝑡

= −𝑛𝑒∂𝐯
∂𝑡

(7.3)

so substituting Equation 7.3 in Equation 7.2 gives
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𝐄 = 𝑚𝑒
𝑛𝑒2

∂𝐉
∂𝑡

. (7.4)

Applying Maxwell’s equations:

From Faraday, 𝛁 × 𝐄 = −∂𝐁
∂𝑡

,

so taking the curl of Equation 7.4 gives

𝑚𝑒
𝑛𝑒2 𝛁 × ∂𝐉

∂𝑡
 = −∂𝐁

∂𝑡
. (7.5)

The Maxwell-Ampère law is 𝛁 × 𝐁 = 𝜇0𝐉 + 𝜇0𝜖0
∂𝐄
∂𝑡

and we are considering weak, quasistatic fields (even ’switching off’ gives a rela-
tively small 𝑑𝐵⁄𝑑𝑡) so we can assume the second term is negligible. Taking the
time derivative:

𝛁 × 𝛁 × ∂𝐁
∂𝑡

= −∇2 ∂𝐁
∂𝑡

= 𝜇0𝛁 × 𝐉.

(the divergence term is zero because 𝛁 ⋅ 𝐁 = 0). Substituting Equation 7.5

∇2 ∂𝐁
∂𝑡

= 𝑚𝑒
𝜇0𝑛𝑒2

∂𝐁
∂𝑡

= 1
𝜆2

∂𝐁
∂𝑡

. (7.6)

7.c [1.5 p] The London equation is

𝛁 × 𝑚∗

𝑛∗𝑞2 𝐉𝑠 = −𝐁. (7.7)

Taking the curl of both sides of the Maxwell-Ampère law gives 𝛁 × 𝛁 × 𝐁 =
𝛁(𝛁 ⋅ 𝐁) − ∇2𝐁 = 𝜇0𝛁 × 𝐉.

again neglecting the term in ∂𝐄⁄∂𝑡. If 𝐉 = 𝐉𝑠, i.e. if we are considering a
superconductor, we can simply substitute Equation 7.7 and we find

∇2𝐁 = 1
𝜆2

𝐿
𝐁. (7.8)

7.d [2 p] Equation (6) has the solution
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∂𝐁𝑦

∂𝑡
(𝑥) =

∂𝐁𝑦

∂𝑡
(0) exp −𝑥

𝜆
 (7.9)

describes the exponential decay of ∂𝐁⁄∂𝑡 with distance inside the surface of
a perfect conductor. 𝜆 is the characteristic length for the decay. From the
definition of 𝜆, it is easy to show that it has the units of length, and a quick
calculation using the 𝑛 given in the exercise yields 𝜆 = 16.8 nm as a ’typical’
value. Deeper than a few times 𝜆 into the conductor we have ∂𝐁⁄∂𝑡 → 0, so 𝐁
must be constant.

That is, Equation 7.6 and Equation 7.9 (Equation 3 in the exercise) tell us that
magnetic field (magnetic flux) can vary within a small distance of the perfect
conductor’s surface, characterised by the length 𝜆, but that 𝐁 must always
remain constant in the interior of a perfect conductor.

Equation (7) has the solution,

𝐁𝑦(𝑥) = 𝐁𝑦(0) exp − 𝑥
𝜆𝐿

 (7.10)

which tells us that the magnetic field 𝐁 decays exponentially with distance inside
the surface, with characteristic decay length 𝜆𝐿, and that 𝐁 must not be simply
constant, but must be always equal to zero in the interior of a superconductor.

7.e [3 p] For the first sphere:

When it is cooled it becomes a perfect conductor and must now obey equa-
tion (3) (Equation 7.6 above), which states that deeper than a few times 𝜆 into
the conductor, the magnetic field must always remain constant with the same
strength and direction. Removing the external magnetic field creates a time-vari-
ation of 𝐁 and, in accordance with Faraday’s law of electromagnetic induction,
current is generated in the conducting sphere. By Lenz’s law (also expressed by
Equation 7.1 above), this current acts to oppose the change that causes it, and
it creates magnetic field inside the sphere to cancel the effect of switching off
the external field. The current flows close to the surface of the sphere, within a
depth of a few times 𝜆, so that a constant magnetic field is maintained deeper
inside the sphere. Because the sphere is a perfect conductor, the induced cur-
rent persists without loss, and the magnetic field in the interior of the sphere is
maintained indefinitely.

For the second sphere:

This sphere becomes superconducting when it is cooled and must obey Equation
(5) (Equation 7.8 above), which states that the magnetic field in the interior of
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the superconductor must be zero. Field can penetrate up to a few times 𝜆𝐿 into
the sphere, and equation (4) says that, in a superconductor, magnetic field leads
to circulating supercurrent in a direction so as to oppose 𝐁. This supercurrent
therefore flows in the surface region of the sphere, and acts to perfectly cancel
the magnetic field in the interior. When the external magnetic field is removed,
further currents are induced (in accordance with Faraday’s law) to oppose the
change, and the balance of surface supercurrents is always such that 𝐵 = 0 is
maintained in the interior.
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8. Motor stunting
Rob Ouwersloot

PION winner 2010, 2011 and 2015
11 points

8.a [1 p] Due to symmetry it is obvious that the COM of the new body lies in between
the two old bodies. So the distance of the new COM to both old COM’s is 𝐿𝐵⁄2.
This gives

𝐼 ′
𝐵 = 𝐼𝐵 + 𝑀𝐵 𝐿𝐵

2


2
 + 𝐼𝐵 + 𝑀𝐵 𝐿𝐵

2


2


= 2𝐼𝐵 + 1
2

𝑀𝐵𝐿2
𝐵.

Combining with the formula for a body with twice the mass and that is twice as
big, so the new moment of inertia is

𝐼 ′
𝐵 = 2 × 22 × 𝐼𝐵 = 8𝐼𝐵.

8𝐼𝐵 = 2𝐼𝐵 + 1
2𝑀𝐵𝐿2

𝐵

6𝐼𝐵 = 1
2𝑀𝐵𝐿2

𝐵

𝐼𝐵 = 1
12𝑀𝐵𝐿2

𝐵

which is indeed correct.

8.b [2 p] Approach 1: Using a scaling argument (either approach is correct and can yield
the full points)

We make a new equilateral triangle out of four identical equilateral triangles, by
putting them together as indicated in the picture:

Figure 8.1
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The COM of the middle and the grand triangle coincide. The distance between
the COM of the grand triangle and the three outer sub triangles is two times
1
3𝐻 , as the distance between COM and any side of the equilateral triangle is
1
3𝐻 . The moment of inertia of the grand triangle is:

𝐼 ′
△ = 4 × 22 × 𝐼△ = 16𝐼△

as the mass has scaled by a factor of 4 and the size by a factor of 2. The moment
of inertia of the grand triangle is also (by composition)

𝐼 ′
△ = 𝐼△ + 3𝐼△ + 𝑀△2

3𝐻2 = 4𝐼△ + 4
3𝑀△𝐻 2

△.

Equating these gives

16𝐼△ = 4𝐼△ + 4
3𝑀△𝐻 2

△

12𝐼△ = 4
3𝑀△𝐻 2

△

𝐼△ = 1
9𝑀△𝐻 2

△

Approach 2: Using integration (either approach is correct and can yield the full
points)

The moment of inertia of a triangle can also be determined by integration.

𝐼△ = 
△

𝑑𝑟2𝜌𝑟2

Let us take the COM as the origin and the x-axis parallel to the base. The
difficulty then lies in deciding which integration interval is dependent on the
other. If we take 𝑦 ∈ [−1

3 𝐻, 2
3𝐻], we get 𝑥 ∈ [(𝑦⁄𝐻 − 2

3)𝐿⁄2, (−𝑦⁄𝐻 + 2
3)𝐿⁄2].

This becomes:

𝐼△ = 𝜌

1
3 𝐻



𝑦= −1
3 𝐻

𝑑𝑦

(−𝑦⁄𝐻+ 2
3 )𝐿⁄2



𝑥=(𝑦⁄𝐻− 2
3 )𝐿⁄2

𝑑𝑥𝑥2 + 𝑦2

= 𝜌

2
3 𝐻



𝑦= −1
3 𝐻

𝑑𝑦2
3

− 𝑦
𝐻

𝐿𝑦2 + 2
3

2
3

− 𝑦
𝐻

3𝐿
2

3

Introducing 𝑞 = 𝑦⁄𝐻 , with 𝑑𝑦 = 𝐻𝑑𝑞 , gives
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𝐼△ = 𝐿𝐻𝜌

2
3



𝑞= −1
3

𝑑𝑞2
3

− 𝑞𝐻 2𝑞2 + 1
12

2
3

− 𝑞3𝐿2

= 𝐿𝐻𝜌𝐻 22
9

𝑞3 − 1
4

𝑞4
2
3

− 1
3

+ 1
12

𝐿2 − 1
4

2
3

− 𝑞4
2
3

− 1
3


= 𝐿𝐻𝜌𝐻 2 1
12

2
3

4 + 11
12

1
3

4 + 1
12

𝐿20 − −1
4



Using 𝐿△ = 2𝐻△⁄
√

3 and 𝑀△ = 1
2𝐿𝐻𝜌

𝐼△ = 2𝑀△𝐻 2 27
12 ⋅ 81

 + 1
48

4
3

𝐻 2

= 2𝑀△𝐻 2 1
36

+ 1
36

 = 4
36

𝑀△𝐻 2 = 1
9

𝑀△𝐻 2
△

as expected.

8.c [1 p] Due to symmetry is obvious that the x-coordinate of the COM𝑀 coincides with
the x-coordinate of the COM△. The y-coordinate is given by:

𝑦𝐶𝑂𝑀 = 1
𝑀𝑀

𝑀𝐵𝑦𝐵 + 𝑀△𝑦△ + 𝑀◯1
𝑦◯1

+ 𝑀◯2
𝑦◯2



= 1
2𝑀𝐵

𝑀𝐵(𝑦△ + 1
3𝐻△) + 1

2𝑀𝐵𝑦△ + 2 ⋅ 1
4𝑀𝐵(𝑦△ − 2

3𝐻△

= 1
2

𝑦△ + 1
3𝐻△ + 1

2𝑦△ + 1
2𝑦△ − 1

3𝐻△

= 𝑦△.

(Or, in words, because the body is twice as close (in 𝑦-direction) than the wheels
(together), but also twice as heavy, their combined COM coincides with the COM
of the central part. And then it is trivial that the total COM also coincides with
the COM of the central part.)

Now the total moment of inertia becomes (it is obvious that both wheels con-
tribute equally):
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𝐼𝑀 = 𝐼△ + 𝐼𝐵 + 2𝐼◯

= 1
9 × 1

2𝑀𝐵 × 𝐻 2
△ + 1

12 × 𝑀𝐵 × (2𝐻△)2 + 𝑀𝐵 × 1
3𝐻△2

+ 2 × 1
4𝑀𝐵 × (1

2𝐻△)2 + 21
4𝑀𝐵 × 𝐻 2

△

=  1
18 + 1

3 + 1
9 + 1

8 + 1
2 𝑀𝐵𝐻 2

△

=  4
72 + 24

72 + 8
72 + 9

72 + 36
72 𝑀𝐵𝐻 2

△

= 81
72𝑀𝐵𝐻 2

△ = 9
8𝑀𝐵𝐻 2

△

8.d [1 p] In the vertical direction, the intial speed is 𝑣𝑦,𝑖 = 𝑣 sin(𝜃𝑅) and the acceleration
is 𝑔. Thus, setting the initial (and thus also the final) height at 0, we get

𝑦(𝑡) = 𝑣𝑡 sin(𝜃𝑅) − 1
2𝑔𝑡2

⇒ 𝑦(𝑡TOF) = 𝑣𝑡TOF sin(𝜃𝑅) − 1
2𝑔𝑡2

TOF = 0

𝑡TOF = 2𝑣 sin(𝜃𝑅)
𝑔

In the horizontal direction, we only have the initial speed 𝑣𝑥 = 𝑣 cos(𝜃𝑅), so

𝑥(𝑡TOF) = 𝐿 = 𝑣 cos(𝜃𝑅)𝑡TOF = 2𝑣2

𝑔
sin(𝜃𝑅) cos(𝜃𝑅)

⇒ 𝑣 =  𝐿𝑔
2 sin(𝜃𝑅) cos(𝜃𝑅)

=  𝐿𝑔
sin(2𝜃𝑅)

.

Which yields for 𝑡TOF

𝑡TOF = 2 sin(𝜃𝑅)
𝑔

 𝐿𝑔
2 sin(𝜃𝑅) cos(𝜃𝑅)

= 2𝐿 sin(𝜃𝑅)
𝑔 cos(𝜃𝑅)

= 2𝐿 tan(𝜃𝑅)
𝑔



8.e [1 p] Landing on a ramp means the speed is more parallel to the landing plane and thus
that the perpendicular speed is smaller. The perpendicular speed has to become
zero (the motorcycle doesn’t bounce away) and the impact of this velocity change
is much smaller on ramp. In the ideal case the ramp would be parallel to the
landing velocity.

8.f [2 p] Initially the wheels rotate at angular velocity

𝜔𝑊 = 𝑣
𝑅◯

= 2𝑣
𝐻△

Conservation of angular momentum dictates
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2𝜔◯𝐼◯ = 𝜔𝑀𝐼𝑀

so the angular velocity of the motorcycle with biker becomes:

𝜔𝑀 =
2𝐼◯

𝐼𝑀
𝜔◯ =

2 1
16𝑀𝐵𝐻 2

△
9
8𝑀𝐵𝐻 2

△

2𝑣
𝐻△

= 2𝑣
9𝐻△

.

The total angle which we have to rotate through Θ is:

2𝜃 + 2𝑛𝜋 = Θ = 𝜔𝑀 𝑡TOF = 2𝑣
9𝐻△

2𝑣 sin(𝜃)
𝑔

= 4𝑣2 sin(𝜃)
9𝐻△𝑔

This gives for 𝑣2

𝑣2 = 9𝐻△𝑔
2

𝜃 + 𝑛𝜋
sin(𝜃)

 .

We want to minimize 𝑣, but as 𝑣 is positive, we might as well minimize 𝑣2, which
has a simpler formula. So differentiating with respect to 𝜃 and equating to 0:

∂
∂𝜃

𝑣2 = ∂
∂𝜃

𝜃 + 𝑛𝜋
sin(𝜃)

 = 0

sin(𝜃) − cos(𝜃)(𝜃 + 𝑛𝜋)
sin2(𝜃)

= 0

⇒ sin(𝜃) = cos(𝜃)(𝜃 + 𝑛𝜋)
tan(𝜃) = 𝜃 + 𝑛𝜋

I.e. 𝑓(𝜃, 𝑛) = 𝜃 + 𝑛𝜋. This has no analytical solution. A sketch or plot will
reveal that the solution will be close to (but smaller than) 𝜋⁄2 and will become
closer with increasing 𝑛.

8.g [3 p] The total normal force on the motorcycle is equal to the component of the
gravitational force perpendicular to the ramp. Thus 𝐹𝑁 = cos(𝜃)𝐹𝑍 . The
acceleration of the motorcycle due to the gravitational force is equal to the
parallel component: 𝑎𝑍 = 𝑔 sin(𝜃). The total frictional force is 𝐹𝑊 = 𝜇𝐹𝑁 =
𝜇 cos(𝜃)𝑚𝑔, so the nett acceleration is

𝑎 = 𝑔 sin(𝜃) − 𝐹𝑊
𝑚

= 𝑔 sin(𝜃) − 𝜇 cos(𝜃)𝑔 = 𝑔 (sin(𝜃) − 𝜇 cos(𝜃))

so the parallel speed is

𝑣(𝑡) = 𝑣 + 𝑔𝑡 (sin(𝜃) − 𝜇 cos(𝜃)) .
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Simultaneously, the wheels will start to rotate. The nett torque on each wheel
depends on the friction, which depends on the normal force. The total normal
force is known, but the normal force per wheel is less trivial. We observe that
the motorcycle does not rotate (as a whole) so there is no nett torque around its
center of mass. The gravitational force acts directly on the COM, so this cannot
provide any torque. This leaves the friction on both wheels and the normal force
on both wheels to balance each other (torque-wise).

Figure 8.2

The distance from the center of mass to the contact points is irrelevant, but let’s
denote it with 𝐿 for now. This gives us 2 equations. First of all, the nett torque

 ⃗𝜏 =  ⃗⃗⃗⃗⃗⃗𝐹 × ⃗𝑟 = 0 ⇒  𝜏 =  ±𝐹𝑟 sin(interior angle) = 0

(with sign dependent on wether the torque points clockwise or counter-clockwise)
is zero:

sin 𝜋
2 − 𝜙 𝐹𝑁,2 + sin (𝜋 − 𝜙) 𝐹𝑊,2 + sin (𝜙) 𝐹𝑊,1 = sin 𝜋

2 − 𝜙 𝐹𝑁,1

cos (𝜙) 𝐹𝑁,2 + sin (𝜙) 𝜇𝐹𝑁,2 + sin (𝜙) 𝜇𝐹𝑁,1 = cos (𝜙) 𝐹𝑁,1

(cos (𝜙) + 𝜇 sin (𝜙)) 𝐹𝑁,2 = (cos (𝜙) − 𝜇 sin (𝜙)) 𝐹𝑁,1

⇒ 𝐹𝑁,2 = 1 − 𝜇 tan(𝜙)
1 + 𝜇 tan(𝜙)

𝐹𝑁,1

The other equation we have, is that the sum of the normal forces on the wheels
is equal to the total normal force 𝐹𝑁 .

𝐹𝑁 = 𝐹𝑁,1 + 𝐹𝑁,2 = 1 + 1 − 𝜇 tan(𝜙)
1 + 𝜇 tan(𝜙)

 𝐹𝑁,1

cos(𝜃)𝑚𝑔 = 1 + 𝜇 tan(𝜙) + 1 − 𝜇 tan(𝜙)
1 + 𝜇 tan(𝜙)

 𝐹𝑁,1 = 2
1 + 𝜇 tan(𝜙)

𝐹𝑁,1

⇒ 𝐹𝑁,1 = 1
2 (1 + 𝜇 tan(𝜙)) cos(𝜃)𝑚𝑔

This results in the following torque on the first wheel
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𝜏1 = 𝐹𝑊,1
1
2𝐻△ = 1

4𝜇 (1 + 𝜇 tan(𝜙)) cos(𝜃)𝑀𝐵𝑔𝐻△

which results in an angular acceleration

𝛼 = 𝜏
𝐼𝑊

=
1
4𝜇 (1 + 𝜇 tan(𝜙)) cos(𝜃)𝑀𝐵𝑔𝐻△

1
16𝑀𝐵𝐻 2

△
= 4 (1 + 𝜇 tan(𝜙)) 𝜇𝑔 cos(𝜃)

𝐻△
.

The tangential velocity of the wheel(s) is equal to 𝑣𝑊 (𝑡) = 𝜔𝑊 𝑅 = 𝛼𝑡1
2𝐻△ =

4𝜇 (1 + 𝜇 tan(𝜙)) 𝑔𝑡 cos(𝜃). This is equal to the parallel speed at:

𝑣 + 𝑔𝑡 (sin(𝜃) − 𝜇 cos(𝜃)) = 4 (1 + 𝜇 tan(𝜙)) 𝜇𝑔𝑡 cos(𝜃)
𝑣 = 𝑔𝑡 5𝜇 cos(𝜃) + 4𝜇2 tan(𝜙) cos(𝜃) − sin(𝜃)

⇒ 𝑡 = 1
5𝜇 cos(𝜃) + 4𝜇2 tan(𝜙) cos(𝜃) − sin(𝜃)

𝑣
𝑔
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9. The Bathtub Problem
Dr. Martin Rohde

TU Delft
7 points

9.a [1 p] This relation can be derived from the mass balance for the system. The total
mass in the system is equal to

𝑀 = 1
4

𝜋𝜌𝐷2𝐻 + 𝑑2ℎ(𝑡)

The change of mass with respect to time equals the outflow of water, hence

𝑑𝑀
𝑑𝑡

= −1
4

𝜋𝐷2𝜌𝑉 ,

where 𝑉 denotes the average velocity of the water in the vertical pipe. The
above leads to

𝑑
𝑑𝑡

1
4

𝜋𝜌𝐷2𝐻 + 𝑑2ℎ(𝑡)

= 𝑑
𝑑𝑡

1
4

𝜋𝜌𝑑2ℎ(𝑡) = −1
4

𝜋𝐷2𝜌𝑉

which can be simplified to

𝑑ℎ(𝑡)
𝑑𝑡

= −𝐷
𝑑

2𝑉 (9.1)

9.b [1 p] We know that the mass of water leaving the bathtub per unit of time should be
equal to the mass of water entering the vertical pipe per unit of time (if not,
mass would accumulate or disappear at the interface between bathtub and pipe).
Hence

𝜙 𝑙𝑒𝑎𝑣𝑖𝑛𝑔
𝑚 = 𝜙𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔

𝑚 (𝑘𝑔
𝑠

).

In terms of velocities, we get

𝜌𝑣 ⋅ 1
4

𝜋𝑑2 = 𝜌𝑉 ⋅ 1
4

𝜋𝐷2,

so that we get the desired relation

𝑣 = 𝐷
𝑑


2

𝑉 (9.2)
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Note that this relation can also be derived from the answer of question a), since

𝑣 = −𝑑ℎ(𝑡)
𝑑𝑡

!

9.c [5 p] For this question, we take two points in the water volume, being:

− a point at the surface of the water in the bathtub (with 𝜐 = 𝑣, 𝑝 = 𝑝0,
𝑧 = 𝐻 + ℎ(𝑡))

− a point at the exit of the vertical pipe (with 𝜐 = 𝑉 , 𝑝 = 𝑝0, 𝑧 = 0)

Since we know that 𝑝
𝜌 + 1

2𝜐2 + 𝑔𝑧 = constant throughout the entire volume,
we know that

𝑝0
𝜌

+ 1
2

𝑣2 + 𝑔 (𝐻 + ℎ(𝑡)) = 𝑝0
𝜌

+ 1
2

𝑉 2 + 𝑔 ⋅ 0. (9.3)

Note that the pressures at both points are the same since the water freely falls
into the sewerage system. Combining Equation 9.3 and Equation 9.2 we get

(9.4)

This result qualitatively is correct: when the height of water in the tub decreases,
the velocity of the water decreases as we know from experience. Substituting
Eq. Equation 9.4 into Equation 9.1 gives a differential equation describing the
relation between the height ℎ(𝑡) and time 𝑡:

𝑑ℎ(𝑡)
𝑑𝑡

= −2𝑔 (𝐻 + ℎ(𝑡))
(𝑑⁄𝐷)4 − 1

= −𝐶1 (𝐻 + ℎ(𝑡)).

Solving this differential equation gives

𝑑ℎ(𝑡)
𝐻 + ℎ(𝑡)

= −𝐶1𝑑𝑡 → 2𝐻 + ℎ(𝑡) = −𝐶1𝑡 + 𝐶2.

From the intial condition, 𝑡 = 0 : ℎ(0) = ℎ0, we find that 𝐶2 = 2𝐻 + ℎ0.
Hence,

2𝐻 + ℎ(𝑡) = −𝐶1𝑡 + 2𝐻 + ℎ0.

The time 𝑡𝑒 at which the bathtub is emptied is determined by the fact that
ℎ(𝑡𝑒) = 0. So we get

𝑡𝑒 =
2𝐻 + ℎ0 − 2

√
𝐻

𝐶1
= 𝐻 + ℎ0 −

√
𝐻 2(𝑑⁄𝐷)4 − 1

𝑔
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10. A quantum one-dimensional wire
Prof. dr. Gary Steele

TU Delft
11 points

10.a [2 p] Schrödinger equation:

− ℏ2

2𝑚
∇2Ψ + 𝑉 Ψ = 𝐸Ψ

Choose coordinates such that one edge of the wire is at x = 0 and the other is
at x = w. In this case, V(x,y) is given by:

𝑉 (𝑥, 𝑦) =  0 for 0 < x < w
∞ otherwise

Note that V(x,y) is separable (in fact, it depends only on x). This allows us to
write:

Ψ(𝑥, 𝑦) = 𝜑(𝑥) ⋅ 𝜙(𝑦)

Separation of variables leads to two differential equations for 𝜑(𝑥) and 𝜙(𝑦):

− ℏ2

2𝑚
𝑑2𝜑
𝑑2𝑥

+ 𝑉 (𝑥) = 𝐸𝑥𝜑(𝑥)

− ℏ2

2𝑚
𝑑2𝜙
𝑑2𝑦

= 𝐸𝑦𝜙(𝑦)

with

𝑉 (𝑥, 𝑦) =  0 for 0 < x < w
∞ otherwise

Solutions for 𝜙(𝑦) are plane waves:

𝜙(𝑦) = 𝑒𝑖𝑘𝑦

with ℏ𝑘 momentum in the y-direction and

𝐸𝑦 = ℏ2𝑘2

2𝑚

Solutions for 𝜑(𝑥) are those of the 1 dimensional infinite square well:
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𝜑(𝑥) =  2
𝑤

sin 𝑛𝜋𝑥
𝑤



𝐸𝑥 = 𝑛2𝜋2ℏ2

2𝑚𝑤2

in which the factor  2
𝑤 can be found by normalising the wave function.

10.b [1 p] The total energy is given by

𝐸 = 𝐸𝑥 + 𝐸𝑦 = 𝑛2𝜋2ℏ2

2𝑚𝑤2 + ℏ2𝑘2

2𝑚
The solutions are thus parabolic bands in the y direction that are offset from
each other by an energy 𝐸𝑥 that depends on the sub-band index, "n".

Figure 10.1

10.c [2 p] For electrons to behave one-dimensionally, a minimum requirement is that they
occupy only the lowest subband and that they are not excited out of the lowest
subband into the next one by thermal energy. This requires:

𝐸(2, 0) − 𝐸(1, 0) > 𝑘𝐵𝑇

3𝜋2ℏ2

2𝑚𝑤2 > 𝑘𝐵𝑇

3𝜋2ℏ2

2𝑚𝑘𝐵𝑇
> 𝑤2

𝑤 <  3𝜋2ℏ2

2𝑚𝑘𝐵𝑇

ℏ𝑐 = 197𝑒𝑉 ⋅ 𝑛𝑚; mc2 = 0.511 MeV with 𝑘𝐵𝑇 = 1
40eV at room temperature, so

𝑘 = 1
40

1
300

𝑒𝑉
𝐾 = 1

1200
𝑒𝑉
𝐾
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 3𝜋2ℏ2𝑐2

2𝑚𝑐2𝑘𝐵𝑇
=  3𝜋2(197𝑒𝑉 ⋅ 𝑛𝑚)2

2 ⋅ 0.511𝑀𝑒𝑉 1
1200

𝑒𝑉
𝐾 ⋅ 0.05𝐾

= 165𝑛𝑚 = 𝑤𝑚𝑎𝑥

So, the width should be smaller than 165 nm (ideally, w ≪ 𝑤𝑚𝑎𝑥).

10.d [2 p] In order to ensure that you electrons are behaving one dimensionally, it is also
important that you ensure that the Fermi energy stays only inside the first band
when you fill up the bands of your wire. Otherwise, electrons have the freedom
to move left and right in you wire in the x-direction. Asumming first you are at
zero temperature, this requires

𝐸𝐹 < 3𝜋2ℏ2

2𝑚𝑤2

For a one dimensional wire, the Fermi energy is given by:

𝐸𝐹 < 𝜋2ℏ2

8𝑚
𝑛2

1𝑑

where 𝑛1𝑑 is the number of electrons per unit length in the y direction.

𝑛1𝑑 = 𝑛 ⋅ 𝑤 gives

𝐸𝐹 < 𝜋2ℏ2

8𝑚
𝑛2𝑤2

Combining this with the upper limit on 𝐸𝐹

𝐸𝐹 < 𝜋2ℏ2

8𝑚
𝑛2𝑤2 < 3𝜋2ℏ2

2𝑚𝑤2

𝑛2 < 12
𝑤4

𝑛 <
√

12
𝑤2 = 3.4 ⋅ 1016 electrons

𝑐𝑚2

For those familiar with electron gasses in GaAs heterostructures, this is pretty
easily achieved (typical 𝑛 ∼ 1011 electrons

𝑐𝑚2 ). There will also be a correction from
temperature, as we then want

𝐸𝐹 < 3𝜋2ℏ2

2𝑚𝑤2 − 𝑘𝐵𝑇

But for 10 nm, the first term is ∼3.6 meV ≈ 4.3 K ≪ 50mK and therefore the
correction is small.
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10.e [2 p] An electron in an electric field ⃗⃗⃗ ⃗⃗ ⃗𝐸 = 𝐸𝑜𝑧 moving with a velocity ⃗𝑣 will experience
a magnetic field in it’s reference frame given by:

⃗⃗⃗ ⃗⃗𝐵 = − 1
𝑐2 ⃗𝑣 × ⃗⃗⃗ ⃗⃗ ⃗𝐸

In our wire, electrons can only flow in the y-direction: ⃗𝑣 = 𝑣𝑦. This gives a
magnetic field

⃗⃗⃗ ⃗⃗𝐵 = − 1
𝑐2 (𝑣𝐸𝑜)𝑦 × 𝑧 = −𝑣𝐸0

𝑐2 𝑥

10.f [2 p] In the reference frame of the moving electrons, there will be a Zeeman splitting
of the electrons spin energy, given by:

𝐸𝑍𝑒𝑒𝑚𝑎𝑛 = − ⃗𝜇 ⋅ ⃗⃗⃗ ⃗⃗𝐵

⃗𝜇 = −𝑔𝜇𝐵
⃗⃗⃗ ⃗⃗𝑆

ℏ
⇒ 𝐸𝑍𝑒𝑒𝑚𝑎𝑛 = 𝑔𝜇𝐵

⃗⃗⃗ ⃗⃗𝑆 ⋅ ⃗⃗⃗ ⃗⃗𝐵

Since the magnetic field points in the x-direction, the electron spin will align
itself along the +𝑥 or −𝑥 direction with an energy difference given by:

Δ𝐸 = ±𝑔𝜇𝐵𝐵 = ±𝑔𝜇𝐵 − 𝑣𝐸0
𝑐2 

𝑣 = ℏ𝑘

Δ𝐸 = ∓𝑔𝜇𝐵ℏ𝐸0
𝑐2 𝑘

To include this in our dispersion relation, we need to subtract this linear correc-
tion to the parabolas plotted in (b): adding or subtracting a straight line from
a parabola results in a parabola whose origin is not at x = 0.

Figure 10.2

Note: lowest energy electrons acquire a finite momentum perpendicular to the
electric field due to the Zeeman energy!



24 February 2017

41
+– 0

PION

2017

11. Ideal Qubits in canonical and mi-
crocanonical ensemble

Dr. Misha Titov
Radboud Universiteit Nijmegen

9 points

11.a [1 p] A simple way to find the free energy 𝐹 = −𝑘𝑇 ln 𝑍𝑁 is to compute first the
partition function 𝑍𝑁 of the canonical ensemble

𝑍𝑁(𝑇 ) = 
𝐸

𝑒−𝛽𝐸,

where 𝛽 = 1⁄𝑘𝑇 and the sum extends over all quantum states of the system.
For non-interacting system of qubits we simply find 𝑍𝑁 = 𝑍𝑁

1 , where

𝑍1 = 1 + 𝑒−𝛽𝜀.

Thus, we obtain the free energy as

𝐹(𝑁, 𝑇 ) = −𝑘𝑇 𝑁 ln 1 + 𝑒−𝛽𝜀 .

In the limit of large temperate such that 𝑘𝑇 ≫ 𝜀 we find that free energy of
the system is given 𝐹 = 𝑘𝑇 𝑁 ln 2. This corresponds to a classical limit when
the free energy per single qubit is proportional to temperature irrespective of
the value of 𝜀. In the opposite limit one finds 𝐹 = 0 since all qubits are in the
ground state.

11.b [1.5 p] The computation of entropy amounts to taking the derivative of the free energy
with respect to the temperature. We find

𝑆 = 𝑘𝑁 ln 1 + 𝑒−𝛽𝜀 + 𝑘𝑁 𝜀
𝑘𝑇

1
𝑒𝛽𝜀 + 1

.

In the limit 𝜀 → 0 we, therefore, obtain 𝑆 = 𝑘𝑁 ln 2 that corresponds to the
Boltzmann formula of a microcanonical ensemble. In the opposite limit of zero
temperature we obtain an exponentially small value of 𝑆 ,

𝑆|𝑇 →0 = 𝑘𝑁𝑒−𝛽𝜀  𝜀
𝑘𝑇

− 1 .

The latter is due to the fact that the system at zero temperature is at a single
ground state.

11.c [1.5 p] The average energy of the system of qubits can be expressed as
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𝐸 = − 1
𝑍𝑁

∂
∂𝛽

𝑍𝑁 = − ∂
∂𝛽

ln 𝑍𝑁 = 𝑁𝜀
1 + 𝑒𝛽𝜀 .

In the high temperature limit, the average energy per qubit is given by ⟨𝐸⟩⁄𝑁 =
𝜀⁄2. This is the manifestation of the so-called equipartition theorem. Intuitively,
the result is clear since in the high temperature limit the probability to find the
qubit in the state 𝜀0 and 𝜀1 are equal, hence the mean energy of each qubit is
given by (𝜀1 + 𝜀0)⁄2 = 𝜀⁄2.

11.d [2.5 p] Similarly to the mean energy we may express the mean square of energy as

⟨𝐸2⟩ = 1
𝑍𝑁

∂2

∂𝛽2 𝑍𝑁 .

For the variance we have

varE = ⟨E2⟩ − (⟨E⟩)2 = 1
ZN

∂2

∂𝛽2 ZN −  1
ZN

∂
∂𝛽

ZN
2

= ∂2

∂𝛽2 ln ZN.

The heat capacitance can be written as

𝐶𝑉 = 𝑇 ∂𝑆
∂𝑇

= 𝑇 ∂2

∂𝑇 2 𝑘𝑇 ln 𝑍𝑁 = 𝑘𝛽2 ∂2

∂𝛽2 ln 𝑍𝑁 .

Thus, we find

varE = kT2CV.

From the expression for the entropy we find

𝐶𝑉 = 𝑘𝑁  𝜀
𝑘𝑇


2 𝑒𝜀⁄𝑘𝑇

(1 + 𝑒𝜀⁄𝑘𝑇 )2 . (11.1)

This function clearly decays in both limits 𝜀 ≪ 𝑘𝑇 and 𝜀 ≫ 𝑘𝑇 , since the
fluctuations of the total energy of the system are suppressed in both limiting
cases. The result is sketched in Figure 11.1a. The behaviour of 𝐶𝑉 at large
temperatures is the consequence of the fact that the spectrum of qubit system is
restricted from below and from above. Indeed the maximal energy of the system
of qubits is given by 𝑁𝜀, that is also an unique quantum state much like the
ground state. Thus, in both high-temperature and low temperature limits the
number of possibilities to distribute the excess energy over the system is strongly
limited.

11.e [1 p] The total number of quantum states in the system is given by 𝑊 = 2𝑁 . The
entropy is, then, given by the Boltzmann formula as
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𝑆 = 𝑘 ln 𝑊 = 𝑘𝑁 ln 2.

11.f [1.5 p] We have the relation

𝐸 = 𝑁𝜀
1 + 𝑒𝛽𝜀

that can be used to find temperature for a fixed internal energy. This gives

𝑘𝑇 = 𝜀
ln 𝜀𝑁

𝐸 − 1
. (11.2)

Note that the logarithm is negative for 𝑁𝜀⁄2 < 𝐸 < 𝑁𝜀. The limit 𝐸 =
𝑁𝜀 gives the maximal possible energy of the system that is characterised by
a unique quantum state. For 𝐸 > 𝑁𝜀⁄2 the number of available quantum
states is decreasing with energy hence the negative temperature. The concept
of negative temperature is well defined in the microcanonical ensemble even
though it requires a rather exotic behaviour of the system such that the number
of possibilities to distribute energy 𝐸 over available microstates is decreasing
with 𝐸 . The result for temperature is sketched in Figure 11.1b.

0 2 4 6 8 10

ϵ

kB T

0.1

0.2

0.3

0.4

CV /Nk

0.6 0.7 0.8 0.9 1.0

N ϵ

E

-5

-4

-3

-2

-1

kT/ϵ

(a) The dependence of 𝐶𝑉 on the
parameter 𝜀⁄𝑘𝑇 as given by Equation 11.1.

(b) The dependence of temperature on the
total energy 𝐸 as given by Equation 11.2.

Figure 11.1
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12. Feynman-Hellmann theorem and
the hydrogen atom

Prof. dr. Peter van der Straten
Universiteit Utrecht

10 points

12.a [2 p]

𝐸𝑛(𝑞) =  𝑑𝑟𝑢∗
𝑛(𝑟, 𝑞)ℋ(r, q)un(r, q)

d𝐸𝑛(𝑞)
d𝑞

=  𝑑𝑟
d𝑢∗

𝑛(𝑟, 𝑞)
d𝑞

ℋ(r, q)un(r, q) +  dru∗
n(r, q)dℋ(r, q)

dq
un(r, q)

+  𝑑𝑟𝑢∗
𝑛(𝑟, 𝑞)ℋ(r, q)dun(r, q)

dq

= 𝐸𝑛  𝑑𝑟
d𝑢∗

𝑛(𝑟, 𝑞)
d𝑞

𝑢𝑛(𝑟, 𝑞) +  𝑑𝑟𝑢∗
𝑛(𝑟, 𝑞)dℋ(r, q)

d𝑞
𝑢𝑛(𝑟, 𝑞)

+ 𝐸𝑛  𝑑𝑟𝑢∗
𝑛(𝑟, 𝑞)d𝑢𝑛(𝑟, 𝑞)

d𝑞

= 𝐸𝑛
d
d𝑞

 𝑑𝑟𝑢∗
𝑛𝑢𝑛 +  𝑑𝑟𝑢∗

𝑛(𝑟, 𝑞)dℋ(r, q)
d𝑞

𝑢𝑛(𝑟, 𝑞)

= 𝐸𝑛
d
d𝑞

1 +  𝑑𝑟𝑢∗
𝑛(𝑟, 𝑞)dℋ(r, q)

d𝑞
𝑢𝑛(𝑟, 𝑞)

=  𝑑𝑟𝑢∗
𝑛(𝑟, 𝑞)dℋ(r, q)

d𝑞
𝑢𝑛(𝑟, 𝑞)

12.b [1.5 p] Choose:
𝑞 = 𝑍

d𝐸𝑛
d𝑍

= d
d𝑍

 − 𝑅∞𝑍2

𝑛2  = −2𝑅∞𝑍
𝑛2

d𝐻
d𝑍

= d
d𝑍

 − 𝑍𝑒2

4𝜋𝜀0𝑟
 = − 𝑒2

4𝜋𝜀0𝑟

Thus

⟨ − 𝑒2

4𝜋𝜀0𝑟
⟩ = − 𝑒2

4𝜋𝜀0
⟨1

𝑟
⟩ = −2𝑅∞𝑍

𝑛2
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12.c [1.5 p] Choose:
𝑞 = ℓ
𝑛 = 𝑛𝑟 + ℓ + 1
⇒ dℓ = d𝑛

d𝐸𝑛
dℓ

= d𝐸𝑛
d𝑛

= 2𝑅∞𝑍2

𝑛3

dℋ
dℓ

= ℓ + 1 + ℓ
2𝑚𝑟2 =

(ℓ + 1
2)ℏ2

𝑚𝑟2

⇒ (ℓ + 1)ℏ2

𝑚
⟨ 1
𝑟2 ⟩ = 2𝑅∞𝑍

𝑛3

12.d [2 p]

⟨𝐹(𝑟)⟩ = ⟨d𝑉𝑖𝑛𝑡(𝑟)
d𝑟

⟩

Since 𝑉𝑖𝑛𝑡 is an Hermitian operator, one can use the Feynman-Hellman theorem,
but substitute H by 𝑉𝑖𝑛𝑡. Thus

⟨𝐹(𝑟)⟩ = ∂
∂𝑟

⟨𝑉𝑖𝑛𝑡⟩ = 0

Since ⟨𝑉𝑖𝑛𝑡⟩ is independent of 𝑟.

12.e [1 p]

d𝑉𝑖𝑛𝑡
d𝑟

= 𝑍𝑒2

4𝜋𝜀0𝑟2 − 𝑙(𝑙 + 1)ℏ2

𝑚𝑟3

12.f [2 p] For ℓ=0 we have
𝑢𝑛(0) = 𝑟𝑅𝑛ℓ(0) ∝ 𝑐𝑟

and thus

⟨ 1
𝑟3 ⟩ =

∞


0

𝑐2 1
𝑟

d𝑟

which diverges for 𝑟 = 0 and thus does not exist for ℓ=0.


