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Abstract

This project presents the first application of a multi-output ANN to the
reconstruction of interaction positions on a fast-timing plastic scintillator
detector on an event-by-event basis. The estimated positions on the fast-
timing detector are compared with those computed from the coincidence
position-sensitive detector and then compared to those obtained using a
classical position reconstruction algorithm. The machine learning algorithm
achieved a position resolution of ~ 5 mm with a standard deviation of ~ 5
mm. Other future developments are also presented. The majority of this
work was carried out using the Go4 analysis framework (for data unpack-
ing, calibration and preparation) and Python (for the implementation of the
machine learning algorithm).
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Chapter 1

Introduction

In this research project a machine learning algorithm determining the inter-
action positions of incident gamma rays on the SPlast detector was devel-
oped. The fPlast is part of the setup of DESPEC (DEcay SPECtroscopy)
experiments at GSI and the goal is to achieve an improved position reso-
lution compared to classical reconstruction techniques, in order to enhance
the detector’s usage during beam experiments.

According to existing research on the application of machine learning for
position reconstruction, Artificial Neural Network (ANN) models typically
outperform all other machine learning techniques in terms of position re-
construction accuracy [1, 2, 3, 4]. The only study dealing with this problem
by means a non-parametric machine learning method is [5], where authors
implement a k-nearest neighbours regression. In [3], Bruyndonckx et al.
also give an accurate description of their CNN model, applied on position
reconstruction.

All examined related studies have used a direct method of data acquisi-
tion and labelling, i.e., by moving the source on the detector and acquiring
data, resulting in a training dataset which may potentially present pitfalls
due to the sampling method and generally dealing with small datasets rang-
ing from a few hundred to a few thousand data points.

The ANN presented in this work has the purpose of quantitatively de-
termining interaction positions on an event-by-event basis. Data analysis
employing classical reconstruction algorithms produced a position sensitiv-
ity of ~ 1 ¢m for the gPlast detector. Such a machine learning model would
be especially useful for future uses of the SPlast detector during in-beam
DESPEC experiments.

A major issue with some of the literature is that clear explanations of



the reasoning behind machine learning model’s selection are not always pro-
vided, or they sometimes show inconsistent choice of model parameters,
methods, and evaluation metrics, which could also lead to overfitting and,
eventually, to very positive (but possibly inconsistent) results. Among the
most commonly observed mistakes are:

1. Multicollinearity between variables used in the model, which may re-
sult in redundancy. The model might still have the same predicting
power, but no conclusion on the individual contribution of the two
variables can be drawn;

2. Use of complex model which are clearly prone to overfitting and might
memorize the training data to a degree;

3. Testing dataset of small size, plus the fact that training and testing
data were not randomized which leads to results being unreliable;

4. Lack of clear statements of error values and experimental results, plus
absence of error analysis.

It is common to see machine learning methods being employed as a
“black-box solution”. Nevertheless, it is crucial to note that not carefully
considering a model’s underlying assumptions may lead to the model per-
forming well on training data, but having little relevance as a prediction tool
when presented with unseen and/or noisy data.

An alternative data acquisition method, consisting of two distinct detec-
tors, one position-sensitive and one time sensitive, was implemented, and
a 22Na positron source was used. The two detectors firing simultaneously
allow for photon coincidence measurements. This technique allowed to ac-
quire a considerably large dataset in little time.

This project’s goal is to consider all relevant aspects of the machine
learning problem and, as a result, to construct a model appropriate to this
setup while also doing effective feature engineering, then choosing the most
appropriate performance metrics.



Chapter 2

Experimental setup

Since the algorithm implemented was a supervised machine learning algo-
rithm, data needed to be labeled. The setup consisted of two detectors
firing in coincidence. To estimate label positions, a position-sensitive y-ray
scintillator detector (PSD) comprising a cylindrical lutetium yttrium oxy-
orthosilicate (LYSO) crystal, with size of 76mm diameter and 3mm thick,
and an active area of 50mm diameter was used. It was optically coupled
with a position-sensitive photomultiplier tube (PSPMT) based on a cross-
wire anode structure consisting of 16 wires in the x-axis and 16 wires in the
y-axis, the Hamamatsu R2486 [6]. Individual multianode readout method
(IMAR) was used, meaning that all anodes are read out separately. This
method provides a more accurate position resolution and it was first used by
A.J.Bird et al. in [7], but only dealing with a one-dimensional setup. The
spatial resolution of the LYSO detector is of around ~ 3 mm over an active
region of diameter ~ 50mm, worsening near the edges. To raise the effi-
ciency of the detector it is wrapped with enhanced specular reflector (ESR)
film to reduce the probability that photons escape.

The second detector is the SPlast, a time sensitive detector, which com-
prises a sheet of BC400 plastic scintillator plastic, which provides excel-
lent timing resolution, for a total active region of size 80 mm x 80 mm
and a 3 mm depth, read out by 16 silicon photomultipliers (SiPMs) !,
which are a multipixel semiconductor photodiodes with each pixel being
an Avalanche photodiode (APD), situated along the edges. The SPlast de-
tector was mounted in a light-tight environment to prevent ambient light
from interacting with the scintillation material and SiPMs.

The scanner system is configured in such a way that a 2?Na positron
source is positioned in the middle of the LYSO and SPlast detectors. When
the radioactive source 2?Na decays, two vy-ray photons are emitted back-to-

Lin the analysis we use only 14 SiPMs because two channels were not working.
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back, each one with a 511 keV energy. On the SPlast, when an ionizing
radiation hits the scintillator, the scintillating material can emit light in
three different ways of interaction: photoelectric absorption, Compton scat-
tering and pair production. The incident energy of photons is absorbed
by electrons in the valence band and get elevated to the conduction band.
When the electron de-excites it goes back to the valence band and photons
are emitted in the visible range, the photons are then collected by the SiPMs
situated along the sides of the SPlast and converted to an electrical signal
[8].

Only events where both the LYSO and pPlast detectors fire in coinci-
dence were recorded in order to minimize the background event rate., in
this way the background event rate in the LYSO detector should be mini-
mal, because the time coincidence between the two detectors ensures that
only events that are seen on SPlast are also seen on LYSO. Both the source
and the SPlast detectors are placed at an optimal distance in order to have a
maximum solid angle. Here is illustrated the geometry of the scanner setup,
the cone represents how events that are seen on the SPlast detector active
area are projected on the LYSO detector:

LYSO bPlast

-

252 mm

+ L

60 mm * 245 mm

*45 mm + 1.5 mm depth + 0.5 mm ESR

Figure 2.1: Schematic view of the geometry of the scanner set up: seen from
the side.
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50/mm

Figure 2.2: Schematic view of the geometry of the scanner set up: SPlast
projected on the LYSO’s active region, seen from the front.

During measurements, a dataset of pulse shapes was recorded for all
trajectories coming inside the coincidence cone of the LYSO and gPlast
detectors, by extracting a timing signal from each of the two detector which
is then processed by the electronics to ensure coincidence.

2.1 Spatial resolution and position calibration

The accuracy achieved by the machine learning algorithm depends on the
precision with which events positions’ are determined on the LYSO detector.
In order to get accurate labels and to correctly estimate the error given
by the LYSO detector (i.e., LYSO detectors sensitivity), from [9] we can
estimate the resolution of the LYSO detector to be around ~ 1 mm in the
center of the detector. The resolution achieved at the edges of the LYSO
detector is expected to be lower because of different effects such as light
reflections and because of the number and distance of photocathodes.
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Chapter 3

Data collection

Data has been acquired by means of the Multi Branch System (MBS), that
is the standard Data Acquisition System at GSI [10]. Unpacking of data,
pulse height spectra and QDC spectra analysis was done by means of the
GSI Object Oriented Online Offline System (Go4) [11], which is based on
the ROOT data analysis framework developed by CERN [12].

The electronics setup is composed of two Versa Module Europa VME Elec-
tronics (for both SPlast and the LYSO detector).

The dynode and anode signals from the LYSO were both amplified and
fed each into an eight-channel discriminator. Then the two outputs were
fed into a coincidence unit. An “AND” gate is used for coincidence, where
the trigger detector is the SPlast detector because of the self-activity of the
LYSO detector, and the two detectors are connected via a trigger bus.

The signals from the FPlast’s SiPMs and the signals from the LYSO
anodes were amplified using fast amplifier boards and then a charge to digital
converter (QDC) determines an event’s charge by integrating the incoming
voltage signal for LYSO.

The gains of the individual anodes of the PMT, are not all equal and
this leads to image distortion and low position resolution for the LYSO
detector, so the gain of each individual anode was calibrated by means of
the individual multianode readout method (IMAR) [13].

The QDC pedestal is the value readout that is measured when there
is no input signal, and the input is open. It is mostly attributable to a
basic current that is required for the QDC to function properly and is also
integrated. The pedestals were therefore subtracted and the resulting charge
spectra rescaled such that the high-energy edges of the individual anodes
were aligned.

13



3.1 Hit position localization data

Interaction positions were obtained from the LY SO detector. For the LYSO
detector the total energy spectrum in LYSO comprises 2,350,383 events.
To restrict the search, the QDC pulse height spectra was summed over all
the 32 channels and a gate was placed on the 511 keV peak. This was done
to prevent the inclusion of background noise into the dataset, as only at
the 511 peak photons are emitted back-to-back. With this gate, there are
853,642 events on the LYSO detector. By further restricting this search on
the SPlast projection on the LYSO (shown in Figure 2.2) there are then
732,568 events.

QDC1Sum
Entries 2350383
Mean 2062
Std Dev 1381
Underflow 53418404
Overflow 7
Integral 2.297e+06
Skewness 1

Counts

o’

-

2

o
HH‘ \HHIH‘ \HHIH| [

=3

L 1 h 1 1 1 1 1 1 | L 1 1 | L L L |
2000 4000 6000 8000 10000 12000 14000

QDC sum

Figure 3.1: Sum of the total QDC across X and Y. The 511 keV peak is
clearly noticeable.

The LYSO positions were then computed on an event-by-event basis, by
fitting a Gaussian distribution to the measured charge profile. The peak of
the fitted Gaussian gives an estimate of the (x,y) coordinates of the 7-ray
interaction, considering the fact that reconstruction on the edges has lower
precision [9, 14].

The final result of this procedure is a combined dataset containing the
pulse shapes from the SiPMs of the SPlast detector and the (z,y, z) coordi-
nates from LYSO, with z-coordinate fixed to 1.5 mm depth. LYSO positions
were then converted to positions on the SPlast detector using trigonometric
formulas.

Here is the geometry of the ?2Na-source and the two detectors:
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Figure 3.2: Trigonometry of the problem for the y-coordinate.

Assuming that the source is positioned at the point (0,0), the surface of
the LYSO has area S4 and an interaction position on the LYSO detector
was defined by coordinates (x,y). Moreover, the surface of the SPlast de-
tector has area Sp and the simultaneous second ~-ray’s (which is travelling
in the opposite direction) interaction position on the SPlast detector with
coordinates (xp,yp) was defined. Then, as in the graph above, the follow-
ing distances were set: a as the distance between the source and the LYSO
detector and b as the distance between the SPlast detector and the source,
while 0 is the angle between the particle trajectory and the x-axis.

Considering the setup described above, the following two equations hold:

tgh =¥
fu-s N

and then the yp position can be estimated as

y
- p? 3.2
YB . (3.2)

and similarly for the x coordinate.

In the end a formula was employed for “translating” an interaction posi-
tion on the LY SO detector, with coordinates (z,y) to an interaction position
on the SPlast detector in coordinates (zp,yp).

The formula is as follows:
T Yy
= (=b—, —b= 3.3
(v5.y5) = (-, ~bY) (33)

In the examined case, these values were set as a = 65 mm and b = 265
mm as it is shown in Figure 4.2.
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3.2 Dataset pre-processing and partitioning

Variable Description

Event The event number

Position x x coordinate of the event of the SPlast detector
Position y y coordinate of the event of the SPlast detector
QDC SPlast (1-14) | A measure of charge of the event

Table 3.1: Description of the used dataset

In the beginning the original dataset was shuffled to make sure that the
ANN can learn in a more robust way, and then it was divided into three
parts in order to obtain: a training set, a validation set and a test set, with
proportions 70/20/10.

The dataset on which the model is trained is referred to as the training
set, while the validation set is the dataset the model has not been trained
with and is used during training to optimize hyperparameters. The test set is
only utilized at the end to make predictions, once the model has been tuned.

When training an ANN, it is important to pre-process data in best
way possible depending on the dataset’s characteristics and features. The
datasets for the algorithm training, testing and validation of the ANN were
pre-processed in the following way:

1. Standardization can be useful to eliminate the influence of one chan-
nel over another, and will influence the objective function to have a
more concentric circle contour, making training easier. Reasons for
standardization:

e Since the channels are measured on different scales and the loss
function used in the machine learning developed for this project is
scale-sensitive loss function, this might cause the contribution of
one channel to the distance to be much bigger than other columns.
So, it is important to rescale the channels so that their variabil-
ity reflects their importance, in this specific case all the channels
should have equal importance, so they were rescaled on the same
range. However, in the case of an ANN, as inputs are combined
linearly this might not be strictly necessary, but during hyperpa-
rameter and parameter tuning this procedure showed to improve
the outcome of the machine learning model.

e It should make the training of the algorithm faster and might
reduce the chances of getting stuck in local optima when using
gradient descent methods.

16



e It should avoid saturation in the output activation function, as
the model is going to have a bounded function between -1 and 1
on the output layer.

For the considered ANN all features are going to be rescaled from -1
to 1, meaning that every datapoint z;; belonging to the it" row and
the j*" column will be rescaled normalization such as:

Lij,stand =
Tmazx,j — Tmin,j
this is the case because the distributions of charges for each channel
are skewed. On the other hand, the label columns do not need to be
applied this procedure, it is still useful to get them rescaled in a [-1,1]
range and this is done according to the following formula:

:Eij

(3.5)

Lij,.stand =
Tmax,j

. After that, a kind of “normalization” per row is applied, which means
dividing by the norm of the entire row, and in this specific case, to
make the Euclidean length of the row equal to one. The reason for
doing this is because in this case a small part of events has really small
or really big values, transforming them means that they would have
equal “weight” on the algorithm by making sure that the sum over all
channels is exactly one. So x;; stand belonging to the ith row and the
4t column will be rescaled as:

Lij stand
Tij stand, final = ~~ _ (36)
> Tiy
J

. Missing data is handled as follows: if any channel from the sides or
up and down SiPMs are missing, the event is discarded. In theory, it
could be also assumed that a datapoint is missing because a SiPM did
not fire when the event occurred too far away from it.

. A workaround was used since the output range is bounded: the labels
were scaled in the range [-1,1], in this way they can be treated as
“probabilities” and an hard sigmoid activation function can be used
on the output layer. To scale them, the used formula is the same as
in Equation (3.5).

17



Chapter 4

Multitarget Artificial Neural
Network Regression Model

From a mathematical perspective, the position reconstruction problem, since
it involves the prediction of continuous variables, i.e., coordinates x and vy,
can be modelled as a regression problem.

The Python programming language and the TensorFlow machine learn-
ing package [15] were used to develop the machine learning algorithm. Ten-
sorFlow is a low-level library based on the concept of a computational graph,
and its individual units, which are called tensors, are essentially the so-called
neurons in machine learning models.

When a v-ray hits SPlast detector, each SiPM sees a signal with an am-
plitude and delay which give info about the hit position: closer SiPMs will
see a larger signal.

The chosen machine learning algorithm was a Multitarget ANN regres-
sion model, which is a specific type of ANN for non-linear regression models,
allowing to predict a continuous vector output.

4.1 Model definition

The training set D, made of N events: D = {(C®, P))} with i =1,..., N,
where P and C' are two matrices of sizes, respectively, N x 2 and N x 14.
The task is to learn a multitarget regression model from the training dataset
D consisting weights W; for the matrix C®) a label P(),

A Feedforward ANN consisting of three layers (input layer, one hidden

layer and output layer) was implemented. The input layer is composed of 14
input nodes. To each node different weights are associated and all neurons

18



in adjacent layers are fully connected to one another, and each neuron in
the hidden and output layer has a weight associated with it.

The following is the ANN’s architecture:

INPUT LAYER HIDDEN LAYER OUTPUT LAYER
(14 nodes) (13 nodes) (2 nodes)

Figure 4.1: ANN architecture

In a ANN, each non-input node aggregates values that are fed into it
by the previous layer’s nodes and produces a single value to which a bias is
added, the result, called net input, is then fed into the nodes of the subse-
quent layer. Then the nodes of the hidden and output layers convert their
net input using an activation function, which determines the node’s output.

It turned out that a elu activation function [16] for the hidden layer was
the most effective to solve this problem. Furthermore, since the goal is to
predict continuous values in a bounded range, a hard sigmoid activation
function was used on the output layer, and since the output of the model
will be in the x-range [—40,40] and y-range [—40,40], the final output was
reshaped to get values in those ranges in the final step.

The following is the output of the first hidden layer of the ANN in Figure
4.1:

elu( ¢ - w4 gy (4.1)
1x14 14x13 1x13

Problems with tanh activation function:

At first glance, this appears to be a viable method because the machine
learning algorithms always provide outputs in the [-1,1] range, which can
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later be rescaled.

However, it did not work as expected as the rescaled positions are in

the range [—1, 1], but the tanh function € (—1,1), it suffers from vanishing
gradient problems and almost never reaches those boundary values. Many
alternatives were tried, but results were not satisfactory yet.
Consequently, by taking inspiration from Bounded Leaky Relu [17] and Hard
Sigmoid [18] activation functions, the most convenient solution seemed to
build a custom bounded linear activation function whose properties and
performance could be further assessed. Here is the function:

—0.001x — ¢ ife<-1
flx)=<X= if —1l<ax<A (4.2)
0.001x + ¢ ifx>A

where A =1 and ¢ = 0.999 A. Using this function eliminates the problem
of the vanishing gradient and it’s less computationally expensive.

One of the best known and most effective methods for training an ANN
is the so-called error Backpropagation (BP) algorithm [19], which system-
atically updates the weights of the connections between the nodes, so that
the output of the network gets closer and closer to the label.

To speed up the training batch normalization [20] is implemented in
the ANN. When the input distribution changes during the training, it ex-
periences covariate shifts [21], to avoid this problem a good practice is to
normalize each training mini-batch, before it enters the activation function
of each hidden layer. In order to further speed up learning but mainly to
prevent overfitting, a stochastic regularization technique called dropout [22]
is also used. Basically, percentage of the units is dropped out from the net-
work (those units are chosen at random), together with all its connections
to the previous and next layers. And this happens for each mini batch that
is being trained. The optimal amount of dropped out units turned out to
be 10%.

4.2 Hyperparameter selection

Hyperparameters are all the training variables that must be manually set
to a predetermined value before the training begins. The choice of hyper-
parameters is critical to the model’s predicting performance. The number
of epochs, learning rate, batch size, and number of nodes in each layer are
some of the most important hyperparameters.

The learning rate is very important because it determines the step size
of the learning procedure: if it is too small the model does not converge (or

20



it does very slowly making the model impossible to train), while if it is too
big it can cause the model to overfit. The best learning rate for this ANN
was determined to be 0.147.

To determine the number of layers, as well as other hyperparameters,
Bergstra and Bengio’s concluded that grid search is inefficient [23], and so
a search in the hyperparameter space using a randomized search was per-
formed, while also considering the minimization of running time of the ma-
chine learning algorithm. Simpler models were therefore preferred to more
complex ones.

According to Glorot and Bengio [24], the biases should be initialized to
0 while the weights w;; should be initialized at each layer according to the
following uniform distribution:

B
VN VN

where N is the size of the previous layer. This initialization gave better
results than the more commonly used initialization to random values dis-
tributed according to a Gaussian distribution.

] (4.3)

wij ~ UJ

4.3 Learning algorithm

The used learning algorithm was adaptive moment estimation (Adam), a
learning rule that includes momentum, known to speed up learning and to
help not getting stuck in local minima (because SGD always goes straight
downhill). According to Kingma et al., [25] the Adam learning algorithm “is
straightforward to implement, is computationally efficient, has little mem-
ory requirements, is invariant to diagonal rescaling of the gradients, and is
well suited for problems that are large in terms of data and/or parameters”.

It essentially combines classical momentum, in that it computes a decay-

ing mean (with decay constant (1) of the past gradient into a momentum
vector m and uses that instead of the actual gradient, together with RM-
SProp, computing an exponentially decaying mean of the past gradient with
decay costant (.
This enables both faster learning along dimensions where gradients remain
stable throughout training steps and slower learning across turbulent dimen-
sions where the gradient fluctuates, and the same time it has the RMSProp
characteristics of facilitating training in unbalanced datasets. This is the
algorithm:
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(gt = vét,lf(et—l)
my = Bime—1 + (1 — B1)g:

s my
T g (4.4)
ne = Bany—1 + (1 — B2)g?

me = 71%5

0y = 0i—1 — B2 \/%Zre

4.4 Loss function

A loss function must be defined with aim to minimize it so that the super-
vised model will learn from the training data.

The goal is to find an estimate P of the labels P that minimizes the
distance of the distributions of real and predicted positions. The MSE loss
function was used:

. 1 ~ .
L(P,P) = [(P ~ PYT(P~ P) (4.5)
where P is a 1 x 2 matrix containing the estimate for the label P, which
is also a 1 x 2 matrix. Then the ANN is trained to minimize the average

MSE value over the training set.

Since training dataset was quite large size, network was trained by means
of mini batches, as it is widely known that training a model with larger
batches causes a significant degradation of the model [26]. The batch size
defines the number of samples that will be propagated through the network.
Since in the considered dataset there are 422556 training samples, batch size
was setted up to 422, for a total of 1000 steps. This is not excessively small,
as it’s important to take into consideration also the training time of the
algorithm. Using this method, the algorithm at each step takes one batch
and trains the network each time, this procedure is done until all samples
have been propagated through of the network.

Regarding the number of epochs, by random search it turned out that
training the machine learning algorithm for 200 epochs was enough, the
algorithm was trained to convergence and then the weights with the lowest
validation error were selected. This procedure, called “early stopping” or
“stopped training” [27], makes sense when assuming that the validation error
is a good estimate of the generalization error.
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4.5 Performance

To estimate the resolution of the machine learning method both systematic
errors (due to the experimental setup) and statistical errors were considered.
The precision estimation of the ML algorithm is computed as the mean
absolute error, which is computed as the difference between real and ob-
served position:
[P — P
N
The final position resolution would then be computed as the sum in
quadrature of the precision resolution of the ML algorithm and the position
resolutions of the labels, that is the LYSO labels, being them independent:

Stot = \/ 0311, + 0y s0 (4.7)

The estimated position resolution of the LYSO detector is estimated to be
of ~ 1 mm.

gML = (4.6)

Figure 4.2: 3D histogram of the errors given position.

The average position resolution achieved by the ANN of 5.7 mm on the
whole surface of the detector and of 4.9 mm in the central region (—20 <
x < 20,—20 < y < 20), with standard deviation of, respectively, 6.4 mm
and 4.6 mm.
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Chapter 5

Conclusion

The ANN achieved an average position resolution of 5.7 mm on the whole
detector surface and 4.9 mm in the central region (—20 < z < 20,—-20 <
y < 20), with standard deviations of 6.4 mm and 4.6 mm, respectively. The
BPlast detector’s resolution was definitely improved, considering that clas-
sical algorithms such as the “Anger Method” provides a position resolution
of ~ 1 c¢m, but there is still space for improvement.

Future developments:

1. Training data used in this project was affected by background noise.
Good events are typically accompanied by background events. Noise
can originate from a range of sources, among which SiPMs failures, and
so on. This problem might be addressed in future projects, for exam-
ple, by attempting to cluster various types of events (good events vs
noise) using unsupervised machine learning techniques. These com-
plex perturbations have an impact on the ML model training since
they might reduce the quantity (and quality) of “knowledge” that can
be extracted from the training dataset.

Most importantly, there would be two kinds of noise in the data: noise
from the labels (i.e., noise in the LYSO) and noise from the features
(i.e., noise in channels).

However, given the nature of this research project and the fact that the
machine learning algorithm developed for the SPlast detector will need
to be retrained eventually when employed for the beam experiments,
it may be too much effort for the time being.

2. Pulse shape discrimination: having the shape of the charge spectra for
each event would be useful to distinguish between different types of
incident particles (i.e. «, 3, 7y, ion).
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