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Introduction

Since the first pioneering work by P.J.E. Peebles in the seventies [39], the
study of cosmological perturbations has improved more and more in the last
decades. In terms of matter perturbations we can define the matter power
spectrum P, (k, z), with k£ the momentum magnitude and z the redshift. It
is one of the key elements in understanding our Universe, its components
and evolution. Surveys as SDSS [11]] have given important contributions in
enriching our knowledge about P,,(k, z). In the next years many surveys
will be launched. One of the most important is Euclid [1]], whose launch is
planned for 2022.

Measuring the distribution of matter on large scale is one of the goals
of Euclid and future cosmological surveys. It could provide information
about many issues such as the total matter density, the primordial power
spectrum, the nature and properties of dark energy and anomalies in the
cosmic microwave background (CMB) [33].

Actually, performing these measurements at very large scales is difficult
due to many experimental limits. Therefore, in the last years procedures
for reconstructing indirectly the large scale structure have been proposed.
Among these, the Refs. [|33] [32], published last year, propose to do it using
information about how the large scale structures affect the small scales. It is
a new and absolutely interesting framework that seems to be really fruitful,
as the present work is going to show.

We will realize a simplified yet stand-alone pipeline to study the impact
of introducing information from large scales on cosmological constraints in
an extended cosmological model with massive neutrinos. Massive neutrinos
affect the evolution of matter perturbations in a peculiar way. We want to
test the improvement that can come from the inclusion of large scales when
constraining the sum of neutrino masses »  m, with P,,.

To this scope, we first produce a synthetic dataset based on Euclid spec-
ifications. Then, we write a code to perform a Monte Carlo Markov Chain
(MCMC) analysis to constrain cosmological parameters. Finally, we com-
pare the results obtained with and without large scales.

This thesis is organized as follows:

1. we start rewieving the Standard Cosmological model and its extension
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in term of the sum of neutrinos masses > m, in Chapter[I}

2. we focus on the neutrino cosmic history and its impact on the cosmic
evolution in Chapter |2}

3. we define the matter power spectrum underlining its dependence on
the cosmological parameter, in particular on ) m, in Chapter 3}

4. we introduce the formalism of large scale structure reconstruction and
light cone matter power spectrum in Chapter [4;

5. in Chapter [5|we apply the formalism introduced in the previous chap-
ters to the Euclid survey as a case study. We refer to Ref. [[10] for
Euclid specifications.

Before moving to discuss our work, let us underline its original products:

* a Mathematica code for the reconstruction of the matter power spec-
trum at large scale using information from a fiducial matter power
spectrum at small scale computed via the Einstein-Boltzmann solver
CAMB [2[;

* a Python code with the definition of the likelihood function used in
the MCMC analysis. It has been developed in order to be compatible
with the Cobaya software [15]] used for bayesian analysis and run on
a HPC cluster provided by CINECA.

* a Python code (in Jupyter Notebook) for the statistical analysis of the
MCMC results using the software GetDist [3]];

* a Python code (in Jupyter Notebook) for the study of the impact of the
cosmological parameters on the matter power spectrum.



Chapter 1

The Standard Model of
Cosmology

1.1 What is a cosmological model

A cosmological model describes the evolution and the characteristics of the
Universe, taking into account three important elements:

1. cosmological principle: the Universe at large scale is homogeneous
and isotropic;

2. gravitation: it is the dominant interaction at large scale described by
the General Relativity;

3. expansion of the Universe: according to the Hubble-Lemaitre Law our
Universe is expanding in each own part. On a first approximation, an
observer see a body distant d recessing from them with a velocity:

v = Hyd, (1.1)

where Hj is the Hubble-Lemaitre constant. Coming back in time, this
implies that our universe expanded from an extreme dense singularity,
from which the term "Big Bang". This is even confirmed by many obser-
vations probing the theoretical predictions, in particular Supernovae,
the abundance of light elements from Big-Bang Nucleosynthesis and
the Cosmic Microwave Background.

1.2 The Standard Model of Cosmology

The cosmological model commonly accepted today, the Standard Model of
Cosmology (SMC), is based theoretically upon the General Theory of Rela-
tivity (GTR), which describes the physics of very large scales in a classical
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1.2. THE STANDARD MODEL OF COSMOLOGY

scenario, and the Standard Model of Particle Physics (SMPP), which de-
scribes the infinitely small in a quantum scenario [41].

Let us focus on the Einstein’s Gravitational Field Equations. They relate
the space-time geometry with the presence of energy-momentum source:

1 A
R,uy - iRguy = —8rG (TMV — 87-‘-Gg“”>’ (1.2)

where R, is the Ricci tensor describing the space-time geometry, G is
Newton’s gravitation constant, A is a constant called Cosmological Constant,
g is the metric tensor and 7}, is the energy-momentum tensor.

A solution for (1.2)) is given by the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric:

2
ds® = dt* — a® dr + 72(d#* + sin® Gdch)] (1.3)
1 — kr?

where k is the curvature parameter describing the spatial curvature of
the universe. According to the cosmological principle, the universe is de-
scribed as a quiet perfect fluid in a time-evolving comoving system with a
scale factor a = a(t) which, in agreement with the expansion of the Uni-
verse, increases over ¢. In this thesis we will follow the common practice of
normalizing the scale factor at the present time ¢y, so that a(ty) = ag = 1.
Concerning the k parameter, there are three possibilities [[13]]:

* k < 0: negative curvature, also called closed;
¢ k = 0: no curvature, also called flat;
* k > 0: negative curvature, also called open.

Using this metric in (1.2) we get the Friedmann equations:

<\ 2
8nG  k
H? = (Z) = ”Tp_ = (1.4a)
i 4nG

According to k& and to the nature of the energy density p of the cosmic
fluid, we get different solutions describing different cosmological models.

In all our dissertation we will use natural units (i.e. ¢ = kg = h = 1) and the metric
signature (+ — ——)
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CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY

For a complete description, we should take into account the following
equation:

. a
pt3lp+p)_ =0 (1.5)
deriving from the continuity equation 7%;” = 0 and the equation of state:
D =wp (1.6)

where w depends on the characteristics of the energy density: it is equal
to -1, 0, 1/3 for cosmological constant, radiation and matter respectively.

If w is constant, using we get from that:
p X q—30+w), 1.7)
As a consequence:
* p = constant for cosmological constant;
e p o a2 for matter;
e p o a~* for radiation.

Just from these approximated results, remembering that a is increasing over
time, we can distinguish in the Universe evolution:

1. the Radiation-Dominated (RD) era in the early Universe;

2. the Matter-Dominated (MD) era;

3. the Dark-Energy-dominated (DE) era until the present time.
We can always define the critical density

3H?

pcrit(t)
that, as we will see in Sec[1.4} it is useful to reformulate the Friedmann
Equation (1.4a)).

1.3 Cosmological perturbations

It is important to underline that the results we have got until now concern
just the evolution of the cosmological background, i.e. the average values.
We focused on a “smooth” universe with homogenous density. Actually, the
universe is not so.

In fact, both the CMB anisotropies and the matter perturbations, which are
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1.4. THE ACDM MODEL

the main cosmological observables, can be analysed introducing cosmolog-
ical perturbations, which describe the deviations from the average density
and the corresponding deviations from the Hubble expansion velocity.

The cosmological perturbations are supposed to be caused by primordial
quantum fluctuations which expanded to macroscopic proportion during the
inflationary epoch [56].

The inflationary epoch is a period between 10~3%s and 10~34s after the Big
Bang during which the universe inflates, i.e. it goes under an accelerated
expansion and expands exponentially its dimensions [25].

The evolution of the cosmological perturbations can be studied with the
Einstein-Boltzmann equations [18]], a set of six differential equations ob-
tained perturbing the Einstein’s Equations and the Boltzmann equa-
tions describing the behaviour of matter and radiation.

1.4 The ACDM model

According to currently available observations, the best description of the
Universe is provided by the ACDM model, where [44]]:

* A stands for the fact that the dominant energy density of the Universe
at the present time (the Dark Energy) behaves like vacuum energy, i.e.
like the cosmological constant of the general relativity;

* CMD stands for the fact that the matter is mainly composed by colli-
sionless not relativistic components known as Cold Dark Matter (CDM)
which don’t react electromagnetically.

If we consider cold dark matter (¢), baryons (alias ordinary matter) (b),
photons (v), dark energy (A), massive neutrinos (v) and a curvature com-

ponent , using (1.7) and (1.8) we can rewrite (1.4a) as:

H*(a) = H3|(Qe+ %) a > +Q a ™t +Qp +Qa™? + pL , (1.9
crit,0

where (2, is the n-eth present-day dimensionless density parameter de-
fined as Q,, = pn.0/pcrit,0 and the subscript "0" means that we refer to quan-
tities evaluated at the present time (we omit this subscript for 2,, from the
moment we will consider just present-day density parameters)

Actually, ;. is not a energy density. It is a fictitious "curvature" density
defined as:

Q= ——. (1.10)
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CHAPTER 1. THE STANDARD MODEL OF COSMOLOGY

It is important to underline that, because neutrino equation of state has
not a constant parameter w, it is not possible in general to isolate the
“a”- dependence and to write the analogous €2, ;,:, where the subscript “tot”
refers to the fact that we consider the sum over all possible neutrino mass
eigenstates.

The sum of the density parameters is normalized:

yo,=1, (1.11)

as we can see from (1.9) putting a = ag = 1 [26].

A dimensionless Hubble constant /4 is commonly used. In this way, the
Hubble constant can be expressed as:

km

Hy=h1 .
0 OosMpc

(1.12)

and consequently we get a dimensionless formulation of (1.9):

h?(2) = (we+wp)(1 +z)3+w7(1+z)4+w1\+wk(1+z)2+¥py(z), (1.13)

1

where we introduced the redshift = using the definition (1 + z) = ¢ and

the quantity w; = Q;h? referred to the i-eth density component.

The ACMD model is called "Concordance Cosmological Model" because
independent and different cosmological observations result in concordant
constraints, as it is reported in the figure

It is interesting to underline that, in its simplest version, the ACDM
model needs just six parameters [44] to describe statistically our universe
that, in this first approximation and in agreement with data [|59], is consid-
ered spatially flat (2, = 0). In this "base" ACDM model the neutrino mass
is fixed so that ) m, = 0.06eV, which is the lower bound allowed by oscil-
lation experiments.

Here it is a commonly used combination of this six parameters:
1. the density parameter for cold dark matter 2;
2. the density parameter for baryonic matter €2 [[26] [16] [[12];
3. the dimensionless current Hubble constant A;

4. the optical depth to reionization 7;
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1.4. THE ACDM MODEL

Supernova Cosmology Project
S\Il\ll\ll‘llll‘ll\l\ll\I\II

| No Big Bang

Supernovae

o v b b Ll gy

0 1 2 3
QM

Figure 1.1: Combined constraints to cosmological densities Qx and Qn = Q. + Qp obtained
from independent measurements using supernovae, CMB and cluster abundance data. The flat
Universe with Qx and Qs is shown with solid line [21]].

5. the amplitude A; of the primordial power spectrum;
6. the spectral index n, of the primordial power spectrum.

This base model, even though already successful, can be extended adding
new parameters. In this dissertation we will particularly focus on a one-
parameter extension called ACDM + > m, model [26] in which the sev-
enth parameter is ) m,,.

This extended model is interesting because it allows to analyse how
much the cosmological data are able to bind the sum of neutrino masses.
The presence of neutrinos modifies the evolution of the cosmological observ-
ables in peculiar ways. Therefore, by reconstructing how neutrinos have
influenced the evolution, we can get some bounds about their properties,
including their masses.
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Chapter 2

Neutrino Cosmology

2.1 Short neutrino cosmic history

We have already seen in Sec[1.4Jthat neutrino equation of state parameter w
is not constant. This is due to the fact that, during their evolution, neutrinos
passed through different scenarios.

In this thesis we consider only light neutrinos (sub-eV), in agreement
with current limits from theory and laboratory results (e.g. Planck [40] and
Katrin [47] Experiment).

In the early Universe, neutrinos are ultra-relativistic and behave like ra-
diation. They are kept in equilibrium with the cosmological plasma by weak
interactions. This is true until when:

Cint(2) > H(z). @21

Iint(z) = n(owv) is the interaction rate, with o the cross-section, v the ve-
locity of the particles and the angular brackets indicating a thermal average.

For neutrinos, we can take v = ¢, since we are in the ultra-relativistic
limit, and o < GrT?, with G the Fermi constant. Moreover, for a single
neutrino species n, considering both neutrinos and antineutrinos, according
to the Fermi-Dirac statistics, n, becomes:

_ 9 d°p3((3).s
(1) = (2m)3 / er/Tv 1 4nm2 1, (2.2)

where ( is the zeta Riemann function and g = 2 for neutrinos [26]].

From (T.9), we get that the rh.s. of 2.I)) is H?(z) = (87G/3)(py + pv),
where, since we are in the early times of the Universe, we considered just the
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2.1. SHORT NEUTRINO COSMIC HISTORY

radiative contributions to the energy density from photons and neutrinos.
For the last ones, the energy density is:

(T,) g / VP2 +m2 e %, ultra-relativistic 2.3)
= b= s .
Pty (2m)3 ) er/Tv +1 myn,,  non-relativistic

Photon energy density p, « T*, too. As we will see below, T}, < T,.
Therefore, since we are in the RD era, from we obtain H? oc T*.

Substituting the first line of in (2.1I), we get that I';,:(2) ~ H(z)
for T, =~ 1 MeV. Once the Universe falls below this temperature, neutrinos
decouple from the plasma.

Shortly after neutrino decoupling, e* annihilation starts and, as a con-
sequence, photons reheat in order to conserve entropy. This reheating does
not involve the neutrinos since they are no more in equilibrium with the
plasma [27]]. Eventually, we get the following relation between neutrino
temperature 7, and photon one 7:

AN1/3

To get this relation, we have also taken into account that at the temper-
ature O(MeV) neutrinos are still ultrarelativistic. Therefore, in agreement
with the Liouville theorem, the shape of the distribution is preserved during
the expansion so that neutrinos are described by the Fermi-Dirac statistics
even when they become nonrelativistic [[26].

Using (2.3) and (2.4), we can explicit the radiation contribution from
photons and neutrinos to energy density during the RD era:

7/ 4 4/3
p’Y-l—l/ = pw |:1 + g <11> Nl/:| ) (25)

where N, is the number of active neutrino species. In the framework of the
SMPP N,, = 3.

However, is valid only under the assumption of instantaneous neu-
trino decoupling. Actually, since neutrino decoupling and e* annihilation
happen almost at the same temperature, there are some relic interactions
between neutrinos and e*. Therefore, in order to account for this effect and
even of finite temperature QED radiative corrections and flavour oscillations

(81, (2.5) becomes:

7/ 4 4/3
Py+v = Py |:1+ 8(11) Neff:|u (26)

16



CHAPTER 2. NEUTRINO COSMOLOGY

with N, = 3.044 [42].
Once neutrinos become nonrelativistic, they behave as matter.

According to (2.4), from CMB temperature measurements we can get
the present time neutrino temperature. As a result, using and
we get for the total density parameter of massive neutrinos €2, a relation
valid at late time depending only on > m,,:

O h% = M 2.

v 93.14eV (2.7)
In the instantaneous neutrino decoupling approximation, the factor at the
denominator is replaced by 94.2 eV.

2.2 Cosmological neutrino effects

Neutrino properties effects on cosmological evolution can be divided in two
areas:

* background effects modifying the evolution of the FLRW metric;

* perturbation effects modifying the evolution of the perturbations in the
gravitational potential and in the components of the cosmic fluid.

2.2.1 Background effects

Considering the ACDM+ " m, model described at the end of Sec. we
can express the relation (1.9) in the form:

wc+wb+wy+w/\+wk:h2. (2.8)

In agreement with (2.7), increasing > m,, we increase w,. We start
considering a reference model with )" m, = 0.06eV, the minimum allowed
by oscillation experiments. According to our model, w; = 0, while both
wy and w;, are well known [43] [6]]. Therefore, so that remains valid
while increasing )~ m,,, we have got three possibilities:

* increasing h, keeping w. and wy constant: looking at the equation
(1.13), we see that the only varying term in the Lh.s. is the neutrino
one. Indicating z,, the redshift at which neutrinos become nonrel-
ativistic, for z > z,,, h(z) does not change since p, in the ultrarel-
ativistic limit does not vary with the mass. On the contrary, in the
nonrelativistic limit (z < z,,), h(z) increases as m,;
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2.2. COSMOLOGICAL NEUTRINO EFFECTS

* lowering w. keeping h and wy constant: looking at (1.13)), we see that
for low redshift, until z < z,,, h(z) is the same since the increase
in m, is compensated by the decrease in w.. On the other hand, for
z > zp, the neutrino density p, is the same as in the reference model,
so that the decrease in w, results in lowering h(z). This is true until
the beginning of the RD era during which the matter contribution to
energy density becomes negligible so that h(z) is alike the reference
model one;

* lowering wy keeping h and w,. constant: since the cosmological constant
term in does not depend on the redshift, first of all lowering wy
results in expanding the MD era. Moreover, while for z > z,, h(z)
is identical to the reference model because wy is negligible and > m,
does not change with z, for z < z,, h(z) decreases for lower values
of w A-

To summarize, changes in ) m, affect the transition epochs and the
expansion rate.

2.2.2 Perturbation effects

Since we can observe experimentally perturbations in radiation and matter
fields, let us analyse the effects on them separately (for a more accurate
analysis look at [26] [27]).

Photon perturbations

The photon perturbations are influenced by time variations in the gravita-
tional potentials along the line of sight between us and the last scattering
surface, i.e. the surface at which photons stopped scattering at the end of
the recombination epoch when electrons started recombining in atoms. This
effect, called integrated Sachs-Wolfe (ISW) effect, is negligible in the MD era
during which the gravitational potentials are almost constant, while is im-
portant early after the recombination (early ISW) in the RD era and late
during the DE era (late ISW).

Therefore, delaying the matter-radiation equality or anticipating the DE
era as a result of varing > m, would increase respectively the early ISW or
late ISW contribution.

Matter perturbations

Even in this case, a first effect is related to the time of matter-radiation
equality since the growth of the matter perturbations takes place mainly

18



CHAPTER 2. NEUTRINO COSMOLOGY

during the MD era and, as we have seen above, the value of )" m, can af-
fect the lenght of this era.

Another effect involves the clustering properties of neutrinos. Relativis-
tic neutrinos tend to free stream out from overdense regions damping all
the small-scale neutrino density fluctuations below the horizon scale [27].
Neutrino clustering is suppressed below the so-called free-streaming scale
defined as the horizon at the epoch of the transition from ultrarelativistic to
non-relativistic neutrino regime. In the hypothesis of sub-eV neutrinos the
transition happens during the MD era, so that we get the relation:

1/2
kps ~ 0.018 Q12 (;Z;) h Mpc ™!, 2.9)

where m,, is one of the neutrino mass eigenstates, €2, = Q + Q. + €2, and
h is the usual dimensionless Hubble parameter at the present time [26].

On the opposite, above the free-streaming scale, i.e. k < kj,, neutrinos
cluster as matter.

Looking at equation (2.9), we realize that increasing neutrino masses
causes the growth of ks and, as a result, the suppression of neutrino fluc-
tuations at small-scale. This slows down the growth of small-scale for other
matter components, due to the fact that neutrinos do not contribute to the
gravitational potential at those scales. It is like the small-scale perturbations
evolved in a mixed radiation-matter Universe in which the growth of the
perturbations is slower than in a pure matter one.

For this reason, neutrinos are a type of hot dark matter (HDM). In pres-
ence of HDM, cosmological structures evolve according to a top-down sce-
nario, i.e. large objects like clusters form first, than smaller ones form via a
fragmentation process. This scenario is not in agreement with observations
according to which small structures seem older than larger ones (bottom-up
scenario, typical of CDM). Historically this led to exclude neutrinos as DM
candidates.
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Chapter 3

The matter power spectrum

In section we have already introduced cosmological perturbations. The
local deviations from average density induce local differences in gravity, so
that where the density is higher, the gravitational force is larger. The oppo-
site happens in regions with lower density.

The overdensities result in attracting more and more matter until when
these regions decouple from the Hubble-Lemaitre expansion starting to col-
lapse forming gravitationally bound objects.

This is the commonly accepted scenario describing the structure forma-
tion.

As a consequence, it is really important to study the local density contrast

—

5(F,2) = W 3.1)

where p,(z) is the background uniform density and z is the redshift at
which the density is evaluated. In this definition, we used the comoving
coordinate -

Z(t) = ) (3.2)
with 7(t) the physical position of the object and a(t) the scale factor.

In term of (3.2]) we can also define the comoving causal horizon:

t dt/ [e¢) dZ/
0= [ ) e -2

representing the distance travelled by a photon from the Big-Bang (¢ = 0 or
z = oo) until the time ¢ (corresponding redshift z).
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3.1. TWO-POINT CORRELATION FUNCTION

3.1 Two-point correlation function

The two-point correlation function is defined as the ensemble averagel] of
the density contrast at two different positions [9]:

E(r,2z) = (0(Z,2)0(Z + 7, 2)). 3.9

Assuming the cosmological principle ¢ depends just on the norm of 7.
In fact, the homogeneity and isotropy at large scale imply respectively that
¢ is invariant for translation of # and # +  and for spatial rotation.

3.2 Power Spectrum

3.2.1 Linear Perturbation Theory

According to homogeneity and isotropy hypothesis, we can describe the cos-
mological background as a perfect pressureless fluid. Since the structure for-
mation involves matter which is mainly nonrelativistic in the ACDM model,
the equations describing the cosmological background and the density con-
trast 0(&, z) are the Newtonian ones, i.e. the continuity, Euler and Poisson
equations. In particular, for the density contrast we get [33] [50]:

1. the Continuity Equation describing the conservation of the mass:

5’55995;’],77) + V- [(1+ (2, 0)8(,n)); (3.5)

2. the Euler equation describing the conservation of the momentum:

_ da U(Z,7)

a (7 = | =2 — = N
[877 +u(Z,n) - V] (2, n) = i a Vo; (3.6)

3. the Poisson equation relating the gravitational potential to its source:

V20 = 4nGa’p,d(2, 1), (3.7)

'Here and after the angular brackets ( - --) indicate an ensemble average. We have seen
that the density contrasts result as fluctuations from an homogeneous background. There-
fore, statistical information about them can be obtained averaging over all the possible real-
izations. Obviously, we have not access to different realizations of our Universe. However,
thanks to the homogeneity and isotropy hypothesis (see Sec. [1.1)), instead of an ensemble
average we can do an average over limited portions of the Universe that are widely sepa-
rated so that they can be assumed as statistically independent. This is also called ergodic
hypothesis [23]].
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CHAPTER 3. THE MATTER POWER SPECTRUM

where ® is the gravitational potential, v = dZ/dn is the velocity field
and 7 is the conformal time. The conformal time is defined as the comoving
distance that light can travel in a time interval [19] In other terms, we get:

dn = ——. (3.8)

Assuming small fluctuations [[9], we can linearize the equations (3.5),
@.6), and solve them in the Fourier space %} in this way, the above dif-
ferential equations become algebraic equations [50] which are easier to be
solved and whose solution we indicate as () (k, z), where the time depen-
dence is expressed in term of the redshift z. Moreover, in the linear regime
each Fourier mode evolve independently conserving the primordial statistics
[9]].

3.2.2 Power Spectrum

We can define:

(6D (K, 2)6M (K, 2)) = / Bz B7 (3V(Z, 2)6D(F + 7, 2)) e iR+HF)T =ik _

3.9

P(k) is by definition the matter power spectrum. In other words, we can
define the power spectrum as the Fourier transformed two-point correlation
function:

Pk, z) = /d3f D (r, z)e_“;’f, (3.10)

where ¢(M)(r, z) is the first order approximation for the two-point corre-
lation function.

Considering the density contrast for non-relativistic matter, we talk about
matter power spectrum P, (k) [27].

2We Fourier transform according to the following convention:

—

8(k,z) = /d?’f 8(%, 2)e R 7.
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3.3. THE EVOLUTION OF THE MATTER POWER SPECTRUM

3.2.3 Primordial Power Spectrum

According to the inflation hypothesis, the first perturbations went through
an exponential expansion. It can be shown that in the simplest inflation
scenarios, the power spectrum of primordial scalar perturbations is Py (k)
(see [I5] and references therein):

Py(k) ox Agk™ 1L, (3.11)

The amplitude A, and the spectral index ng, as seen in Sec. can be
used as cosmological parameters.

The primordial power spectrum is modified during the evolution of the
Universe. In particular, all the scales entering the horizon at a certain epoch
are evolved, while the scales larger than the horizon do not change.

3.3 The evolution of the matter power spectrum

At this point, it is useful to briefly review the evolution of the matter power
spectrum and its dependence on redshift. Following the Ref. [28]], we will
obtain our results in term of a which is related to z according to the relation
a=(1+2)"L

We consider only perturbations of CDM: we take this choice to keep
things simple and because CDM is the principal matter component. Com-
bining the Egs. and in the Fourier space we obtain the equation
of evolution for §,:

9?’® 3 0a 0P

9%, 10 05, Po 30000
o2 adnon’

_ 2
7 amn oy — KV

(3.12)

where ® is the Newtonian potential and ¢ the spatial curvature we find in
the Einstein-Boltzmann equations we talked about in Sec.
The Eq. (3.12) has different solutions according to the k’s scale:

1. for scales larger than the horizon, . evolves with a depending on the
dominant energy density component (e.g. during the RD era 6.  a?);

2. for scales entering the horizon, i.e. becoming smaller than the horizon,
during the RD era d. evolves in two stages:

(a) until the end of the RD era, the perturbations do not grow (we
talk about stagnation or freezing-in of matter perturbations [53]]);

(b) starting the MD era, perturbations evolve with §. x a;

3. for scales entering the horizon during the MD era 6. « a.
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Figure 3.1: Matter power spectrum for different values of z.

Once we obtain J., we can calculate the matter power spectrum:

8m?
b (k a) |:CLD((Z):|2 kP()(k) 25 ) aOHD<k<k§eq
m b - . 4
ap (QmagHg)Q ;“ZZ (a + ﬂln(,ﬂ’jq)) , k> ke
(3.13)
with « and § numerical coefficients independent of k and
keq = oqHeq, (3.14)

where a., and H,, are respectively the scale factor and the Hubble-Lemaitre
constant at the time of the equivalence matter-radiation, i.e. the epoch at
which the transition from the RD era to the MD era happens.

D(a) is the growth factor defined as:

_ ambc(k,a)
D(a) = ade(k,am)’

where a,, is the scale factor at some time deep inside the MD era.

The combination of the three above solutions for the perturbations evo-
lution causes the shape of the matter power spectrum.
The scales before the turning point were larger than the horizon at 2., and,
as a consequence, do not differ from the primordial matter power spectrum.
The scales after the turning point were smaller than the horizon at z,.
Therefore, they change with the cosmic evolution according to what we
said above at the points 2 and 3.

To sum up, we can rewrite the Eq. (3.13)) as:

P(k,a) = [T(k,a)]*Py(k). (3.16)

(3.15)

25
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Parameter Value

wp 0.02242

we 0.11933

T 0.0561

A 2.105 x 1079
N 0.9665

h 0.6766
>omy 0.06 eV
Negy 3.046

Table 3.1: Reference Cosmological Parameters

T(k,a) is called transfer function. It tell us how the primordial matter
power spectrum has been modified by the evolution in order to obtain the
matter power spectrum at a given redshift.

In Fig. [3.1] we can see how the matter power spectrum changes with z.

To study the matter power spectrum F,,(k), we can use the Boltzmann
codes calculating theoretical power spectra given a set of cosmological pa-
rameters. In the present work, we will use the Boltzmann code CAMB [?2].

To sum up: P,,(k) gives us a lot of information about the cosmic evolu-
tion and the various cosmological parameters. It is important to underline
that we can measure P, (k) at different z and get informations about the
Universe at that epochs.

From large scale, i.e. small ks, we can extrapolate information about the
primordial fluctuations during inflation. On the other hand, smaller scales
underline what happens when a fluctuation enters the horizon. This aspect
is particular interesting because, as we have already said in Sec. the
perturbations grow faster during the MD era, so that we see a turning point
in the power spectrum corresponding to the horizon at z.,, as reported in
Fig[3.2in which we use the parameters from the Planck collaboration 2018
[6] in Table and, in agreement with our ACDM + ) m, we have also con-
sidered a reference mass value ) m, = 0.06 eV and N,y = 3.046 E] (see
Table 3.1} [42]] [20] [37] [8].

On the contrary, fluctuations grow slower during DE era, so that antic-
ipating the matter-dark energy transition z, will suppress the power spec-
trum. Moreover, looking at the equation (3.3), we can see that increasing

®In the present work, instead of the more precise value 3.044, we will use 3.046 in
agreement with Planck 18 and we are not enough sensitive respect to the difference between
them.

“All the figures in this chapter are realized taking the redshift z = 0 and the parameter
from Table

>This and the following figures are produced using CAMB via Python programming.
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Figure 3.2: Matter power spectrum at z = OE]

h will result in lowering r;, and, consequently, increasing the value of the &
modes which can enter the horizon (see Fig. [3.3).

In the right side of the matter power spectra, after the turning point, we
can see also an oscillatory trend. This is due to the so called baryon-acoustic
oscillations (BAO): these are the acoustic oscillations in the photon-baryon
fluid that remain frozen when baryon decouple from photons. Even though,
after recombinations, photons decouple from the matter, the huge photons-
to-baryons ratio of O(10'9) [6] still keeps for a while the baryons coupled
to the photon bath [26].

We have already seen the neutrino impact on the evolution of matter
perturbations in Ch[2] In the next section we will see how the matter power
spectrum changes when varying > > m,,.

For a fuller description about the evolution of the matter perturbations in
a Universe with mixed matter components (i.e. CDM and baryonic matter)
the interested reader is referred to Ref. [27] [[29].

3.4 Neutrino effects on the matter power spectrum

As we have said in Sec. neutrino masses can influence the cosmological
evolution and, therefore, the matter power spectrum, too.

Firstly, we analyse the case in which the increase of »_ m, is compen-
sated by increasing h? (see Figl3.4). It is relevant comparing the figures

27



3.4. NEUTRINO EFFECTS ON THE MATTER POWER SPECTRUM
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Figure 3.3: Matter power spectrum for different values of h: increasing h corresponds to in-
creasing all the power spectrum.

and [3.4} in both cases h is increasing, but we see a different behaviour in
the spectra.

In both cases, in the left side we see the spectra increasing with h. This
is no more true in the right side: in the spectra are suppressed for in-
creasing h. This is due to the fact that in this case we are varying not only
h, but even ) m, whose growth, as seen in suppresses clustering at
small scale.

We understand that varying two o more parameters allows to decrease
background effects lightening up the perturbations ones and allowing to
constrain cosmological parameters. This is what we will do this in the next
chapters.

Another interesting case is the one in which the increasing neutrino mass
is compensated by lowering w. keeping w. + w, and all the other cosmolog-
ical parameter constant.

From Fig[3.5]it is evident that the matter power spectra at small k’s do
not show any difference. This is due to the fact that, for £ < k;, neutrinos
can cluster behaving as cold dark matter.

On the other hand, as underlined in the Sec. the neutrino cluster-
ing for k > ky, are suppressed and even the growth of other matter com-
ponent perturbations. As a consequence, increasing »  m, will get P, (k)
down.

For the sake of better understanding this asymptotic behaviour, we in-
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Figure 3.4: Matter power spectrum for increasing >, m,: the growth of > m,, is compensated

by the growth of h.
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Figure 3.5: Matter power spectrum for different values of w. and w, keeping w. + w, constant.
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Figure 3.6: Ratio of massive neutrinos matter power spectrum to massless neutrinos power
spectrum: for the former, we vary w. and w, keeping w. + w, constant.

troduce the approximation at z = 0 [26]]:

Pm(k‘ > kfs,fl,>
Pm(k > kfsafz/ = 0)

with f, = Q,/Q,,, valid until when f, < 0.07 [27]. Applying it to
the same configuration used in Fig. [3.5] we get the results in [3.6] where
we can see the curves reaching a plateau between k = 1h Mpc™' and
k = 10h Mpc ™"

~1—8f, (3.17)

In order to verify the validity of (3.17), we plot f, against the ratio
P(f,)/P(f, = 0) evaluated at k£ = 10h Mpcc~! for all the different values
of " m,. From Fig. [3.7, we get that, as expected, the approximation looses
validity for f, > 0.07.

3.5 Non-linear Matter Power Spectrum

So far, we have considered small fluctuations with respect to the background
(i.e. 0,, < 1), so that we have been able to limit ourself just to the linear

theory in solving the fluid equations and

Actually, at each redshift = there’s a scales k,; below which 4,, ~ 1. In
this case, the linear theory does not well describe the cosmic evolution. We
have to introduce a non-linear study and define the non-linear matter power
spectrum P,;:

—

(0(k,2)8(K, 2)) = (27)36p(k + k') Py (k, 2). (3.18)
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Figure 3.7: Ratio of massive neutrinos matter power spectrum to massless neutrinos power
spectrum as a function of f,. The red dashed line shows the expected trend (1 — 8 f,).

Looking at Fig[3.8| we can see that at large scales, the non-linear power
spectrum coincide with the linear one, while this is not true at small scales:
the former is bigger due to the growing contributions from non-linearities.
In other words, in the ACDM model we see a hierarchical structure forma-
tion, with smaller scale going non-linear earlier [5].

The study of P,;(k, z) is complex: it can be done using, for instance, N-
body simulations like the MassiveNus simulations [|34]] which have to take
into account the astrophysical and hydrodynamical processes happening at
these scales [26]].

Despite this complexity, the non-linear study is really useful. First of all,
we could extract much more information from a survey dataset if we extend
the comparison between theory and data to smaller scales, under the con-
dition that the theoretical uncertainties are smaller than the instrumental
ones [5]].

Moreover, as we will see in the next chapter, the non-linear treatment
allows to get informations about the distribution of matter on large scales
that we are not able to achieve with direct observations due to experimental
limits.

3.5.1 Neutrino effects on P, (k, z)

It is interesting analysing the neutrino effects on the non-linear matter power
spectrum studying the ratio P,;(f,)/P.(f, = 0), as done in the last part of
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Figure 3.8: Linear and non linear power spectrum
the Sec.

Using the same parameters configuration as in Fig. we get the Fig.
3.9

In Fig. we can compare the two different cases: until k ~ O(10~'h Mpc™!)
the curves are almost the same for both cases. Then, the non-linear curves
fall down until a minimum at k,,;, ~ O(1h Mpc’l) and, later, start increas-
ing describing a spoon shape [29].

For the minimum of the spoon shape curves, we can express a similar
formulation of

Pnl(kmin7 fl/)
Pnl(kmina fzz = 0)

~1-104,. (3.19)

Plotting the ratio P(f,)/P(f, = 0) evaluated at k = 1h Mpc ' against
fu for all the different value of > m,, we can see that, as expected, the
relation (1 — 10f,) describes the trend better than (1 — 8f,,). Even in this
case, the approximation seems loosing validity for f, > 0.07.

The spoon shape is the result of the combination of two effects [[29]:

1. as we have said in Sec[2.2.2] increasing ) m,, results in slowing the
growth of structure at small scale. Therefore, they enter later into the
non-linear regime adding a suppression effect to the linear one. This
explains the slower trend (1 — 10f,) instead of (1 — 8f,);

2. in the non-linear regime, the matter power spectrum looses memory
of its initial conditions, so that for large k the ratio between massive
neutrino spectrum and massless one should be asymptotically one.
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Figure 3.9: For all the spectra, w. + w, and all the other cosmological parameters are constant.

100 4
TG x 107!
=
%
=
4% 1071
=~ —_— Y m, =006V  =—— Y m, =075V
— Y my, =0.06cV = Y m, =0.9cV
310N — Sm, =036V —— Ym, =10V
—_— 3 m, =045 eV Smy =126V
— Y m,=06eV  —— Ym, =15V
— T T T T T T
1075 10~* 102 1072 107t 10° 10!
k[h Mpc™]

Figure 3.10: Ratio of massive neutrinos matter power spectrum to massless neutrinos power
spectrum: for the former, we vary w. and w, keeping w. + w, constant. The solid lines are used
for the non-linear spectra while the dashed ones for the linear ones.
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Figure 3.11: Ratio of massive neutrinos matter power spectrum to massless neutrinos power
spectrum as a function of f,. The solid lines are used for the non-linear spectra while the dashed
ones for the linear ones.The blue dot dash line shows the trend (1 — 10f,) while the red dashed
one shows the trend (1 — 8f.,).

3.6 Galaxy Power Spectrum

Galaxy surveys allow to measure 3D spatial distribution of galaxies and to
achieve the power spectrum of galaxies Py(k, z). Actually, surveys are sen-
sitive just to luminous matter, so that galaxy power spectrum P,(k, z) can
differ from P,,(k, z): galaxies are defined as a biased tracer of matter distri-
bution [26].

In order to take into account of this, we introduce the bias function
b(k, z), so that:
Py(k, z) = b*(k, 2) P (k, 2) ] (3.20)

The bias is scale and redshift dependent. Actually, at large scale it can
be considered scale independent, while concerning the redshift dependence
we can assume a simple redshift relation:

b(z) = bo(1 + 2), (3.21)

where by is the present time value.

Since the primary scope of this thesis is to develop a simple pipeline
analysis to conduct exploratory studies on the impact of large-scale data,
here we make some simplifying choices.

First, as already said, we neglect the scale dependence of the bias and
assume a simple redshift dependence as in Eq. (3.21).

SThis relation is valid both for linear and non-linear power spectrum
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Secondly, in writing Eq. (3.20), we assume that P, is related to the total
matter power spectrum. However, it has been shown that Eq. should
have the power spectrum of cold and baryonic matter at the r.h.s. instead of
the total P, [[7] [14] [35] [36].

Finally, we neglect the effect of redshift-space distortions, i.e., the fact
that the use of the redshift as an indicator of the distance can induce distor-
tions in the reconstructed maps of objects (see e.g. [23]]).

Given the range of scales and redshifts considered in this work, the first
and the second assumption are not too strong. The third assumption has
been made to simplify our analysis, and will be eliminated in future works
following Ref. [|32].
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Chapter 4

Large Scale Structure
Reconstruction

As already said in Sec[3.5] measuring the distribution of matter on large
scale is difficult due to experimental limits. For example, we should observe
really large volumes and portions of sky detectable only via satellite. Fur-
thermore, concerning the 21cm intensity mapping, it will be hard to mea-
sure large scale modes on the line of sight will never be measured directly
because of the foregrounds [38]].

However, we can reconstruct large scales indirectly studying how large
scale overdensities modify the growth of small scale structures, in other
words relating the linear matter power spectrum with the non-linear on
In the present dissertation, we will follow the works by Li et al. (2020) [33]]
[32].

In order to achieve the reconstruction goal, it is useful starting reviewing
the standard perturbation theory (SPT) up to second order.

4.1 Standard perturbation theory

The fluid equations (3.5), (3.6), (3.7) can be solved perturbatively in the
Fourier space obtaining:

=360k, 2) = 3 Di(2)sM (R, 4.1
n=1 n=1

— ZG(”)(E, z) = dlnDl ZD” ") (k), (4.2)

'Here and after we will indicate the matter power spectrum as linear matter power spec-
trum Piin(k, 2).
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where §(k, z) is the Fourier transform of V - #(k, z) and we isolate the time
dependency in the so-called linear growth factor D:(z) [9].

The first term § (1)(1_5, z) of the expansion refers to the linear evolu-
tion, so that:

—

(6W(k,2)6W (K, 2)) = (21)*0p(k + k) Piin (k, 2). (4.3)

Substituting (4.1) and (4.2) in the Fourier transformed equations (3.5)),
(3:6), (3.7) we get for the second order term of (@.1)) [33]:

—

— k1)6W (&1, 2)6W (K — ki, 2), (4.4)

ol

. &3k .
5(2)(k,z)—/(27r)13F2(k1,

wherd?:

Fy(ky, ko) = = + T + & (4.5)

5 20k k)? | kika [k ko
77 kK3 2k ko )
is symmetric under the exchange of its arguments.

As we will see in following equations, in these first steps into the study

of the large scale structure reconstruction we will neglect the z dependence.

For the sake of relating large scale structures with small scale ones, it
is useful to calculate the Fourier transformed two-point correlation function
for two modes k, and 12:’; at small scale in the squeezed limit k= ks + E’s,
with kg, k. > k; and k a large scale mode. To second order:
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ks)).
(4.6)

In the last equality we rewrite all the dependencies in term of ks and k.

For each term in the r.h.s. of (4.6), substituting the expression (4.4) for
62, we get:

— — — 3_’ - — — - — — — - -
(6M (k)0 (ky—ky)) = / (;ll;gFg(k, ky—ks— k) {(6W (k) 6W (ky— ks —k)6M (K)).
v

4.7)
Since the small scale modes (large magnitude k) evolve independently of
the large scale modes, we can take the large scale mode out of the 3-point

2Actually, (@.1), (4.2), (4.5) are exact just for a pressureless perfect fluid in an Einstein-
de Sitter Universe, i.e. a flat matter dominated universe; however, the differences with the
ACDM model are found to be negligible [|48]].
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correlation function, so that:
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L — ks — k)0 (k) +
+ (6 (k)W (k)M (ky — ks — k),
(4.8)

where the first term in the r.h.s. refers to the case with small || and second
one to the case with small |k; — ks — k|. Using the definition (4.3):

<5(1)(Es)5(1)(lgl - Es - E)é(l)(E» 271-)3Plin(ks) [6D(El - E)é(l)(E)+

q (4.9)
)]

= (
+0p(ks + k)oW (K — ks — k
Therefore, (4.7) becomes:

<5(1) (E5)6(2)(EI - Es» = ]Dlm(ks) d3E F2(Ea 1 — Es - E) [5D(kl - k)5(1)(E)+

— —

+ 0p (ks + k)6 (B — ks — k)] = 2F (—ks, k) Piin(ks)0M (ky),

(4.10)
where in the last equality we use the symmetry of F5.
Finally, we get to the second order:
(0(ks)o(ky — ko)) = f(Ks, ki — ks)o™ (ky), (4.11)

where:

—

f(ka‘a El - Es) = 2F2(_E53 El)le(ks) +2F2(_El +E37 El)Plin(kl - ks)- (4-12)
Looking at the above equations (4.11) and (4.12), we can deduct that it

is possible to estimate large scale modes using small scale ones.

4.2 Quadratic estimator

Using the knowledge from the relation (4.11]), we can formulate an estima-
tor for large-scale modes. We start summing over as many pairs as possible
with a weight function g(ks, k; — ks):

R
5(1)(kl):A(kl)/(zw)gg(ksakl_ks)(s(ks)é(kl_ks)u (413)
where:
U
A(kl): /(27T)3g(k87kl_ks)f(k87kl_ks) (414)
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-

is the normalization factor obtained requiring that (59 (k;)) = 6 (k).
Therefore, we get:

—

(6D (k)W By = (2m)38p(Fy — k) [Pin (k) + N (k)] = “@15)
= (2m)38p (ky — k) [P (k) + N (k)] '

where in the gaussian noise term

- - By 5 - - - L
N (kr) = 2A% (k) / ny? (s k= k) Pulka) Bu(lk = k) (4.16)

we neglected the shot noise which describes the fact that we can realize
only an incomplete sampling of the density field [45]. The last equality in
(4.15) is possible because, as we have said in Sec. at large scales the
non-linear power spectrum coincide with the linear one.

In order to minimize the noise, we choose for the weight ¢ the form:

— - g ES,E _Es
g(ks, ki — ks) = fike, = )~ :
2Pnl(ks)Pnl(’kl - kSD

4.17)

In this way, we get:
N(E) = A(R) = [ / The __Plski-k) 17 (4
(2m)° 2P (ks) Py — ks )

Using the Fisher matrix formalism [[49], we can define the error asso-
ciated to measurements of the matter power spectrum for a set of narrow
k-bins of width Ak: [

2T (
kivV Ak

where V' is the comoving volume used by a survey for measuring the
matter power spectrum at k;. The two terms on the r.h.s. of (4.19) account
respectively for:

§P(k)) = Pu(ki) + A(ky)), (4.19)

1. the cosmic variance due to the fact that we have access only to one
Universe or, in terms of the ergodic hypothesis, to limited portions of
the Universe [24];

2. the reconstruction noise due to the fact that we are doing an indirect
estimation of the large scale structure.

Considering a toy survey of comoving volume V = L3 and width Ak =
or/L = 2w /V'/3, we obtain:
(27T)1 /2
k.lvl /3
3Actually, the definition is correct under the assumption that V' is much larger than the

scale of the features of the power spectrum so that P(k) can be considered constant inside
the Fourier cells (27)%/V which, moreover, must be considered independent [45].

5P (k) = (Poi(kr) + Alky)). (4.20)
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4.3 Light cone formalism

So far, we have neglected the redshift dependence focusing just on a snap-
shot. We observe a galaxy at distance z as it was at the time z(z). Therefore,
we do not have access to the full 4,,(k, z) for every values of k inside the
light con but just for the thin shell from which light, emitted at the time
z(x), has reached us [32]. To more efficiently reconstruct the large scales,
we want to consider the spectrum defined inside the light cone, instead of
individual snapshot at different z.

To do so, we need to define the matter power spectrum over the light-
cone PC(k), whose formulation is slightly more complicated than the one
for the matter power spectrum at fixed redshift. In the works [32] and [57],
an interesting description of the argument is provided.

In particular, following [57] we can introduce a useful approximated
definition of PLC (k) as the weighted average of the power spectrum over
the survey comoving volume V, with weights given by the squared mean
comoving number density n(z) of objects at a given redshift:

PLC (k) :./\/'/d:v[n(g;) x]QPnl(k,z) _

(4.21)
= _dz n(z) z(2)]? z
N [ 355 [0 ) Pt 2),
with the normalization factor N:
-1 -1
N = {/dm[n(m) x]2} :{ Ijé) [n(z) x(z)]Q} . (4.22)

In both (4.21) and (4.22)), in the last equality we rewrite the integral in
term of redshift using the relation
dz

dx = 8 (4.23)

between z and the comoving coordinate z.
Finally, we introduce the bias factor we talked about in Sec. Using
the relation (3.21) for the bias, we obtain:

PHCWH) = N [ 5 o)1+ 9 Pukn). (429
with N the same as (4.22).

“The light cone is the locus of events in spacetime that can be causally connected to us
[13].
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4.3. LIGHT CONE FORMALISM

It is useful to rewrite (4.24) and (4.22) as:

PLC (k) ~ ./\/Z HA(; [n(z) by z(z)(1 + z)}QPnl(k, 2), (4.25)

Az 9 -1
~ 2
N { () [n(z) z(z)] } , (4.26)
replacing the integral with a sum over the redshift bins Az of the survey.
Once we have defined P5C(k;), we introduce the associated error. It can

be proved [32] that the relations (4.18)) and (4.19)) are still valid substituting
Pnl(kl) with PnLlC(kl).
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Chapter 5

A case study: Euclid

In the last chapter we introduced the formalism of large scale structure re-
construction. In this chapter, we discuss an application of this formalism.
The case study is the future survey Euclid.

Euclid is an ESA space telescope that will measure the shapes and the
redshifts of galaxies over 15000 deg® on the sky and up to z ~ 2, thus
allowing to explore the expansion history of the Universe. Its launch is
planned for 2022 [1]].

5.1 Euclid specifications

Being able to observe ~ 30 million galaxy redshifts, Euclid will measure
galaxy clustering and reconstruct the matter power spectrum to percent ac-
curacy [10] [54].

In this work we simulate Euclid performance. We assume observations
at redshifts between z = 0.90 and 2z = 1.80, for a comoving volume V =
19.7(h'Gpc)?3. We assume 4 redshift bins.

Bin width, central redshift and comoving number density of objects de-
tected on average in each bin are taken from Ref. [10] and reported in Tab.

G.1

Az Zm n(z)[(h Mpc™")?]
0.2 1 6.86 x 107%
0.2 1.2 5.58 x 10~4
0.2 1.4 421 x 1074
0.3 1.65 2.61 x 1074

Table 5.1: Expected number density observed by Euclid. We assume that each redshift bin of
width Az is centered in z,.
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5.2. LARGE SCALE RECONSTRUCTION

Parameter Value

wp 0.022

We 0.12

T 0.07

A, 2.1 x107°
N 0.96

h 0.68
Sm, 0.06 eV
Negy 3.046

bo 0.73

Table 5.2: Reference Cosmological Parameters used for the standard dataset.

5.2 Large scale reconstruction

Using the aforementioned specifications and the relations (4.25]) and (4.26)),
we construct a synthetic dataset consisting of 30 data points in the range of
scale 0.02 < k[hMpc™'| < 0.20. We refer to this dataset as “standard”.
It will represent direct measurements of the matter power spectrum. The
reference cosmological parameters used to realize the standard dataset via
CAMB are in Table

The error associated to the standard dataset is given by the cosmic vari-

anceE]:

17 1/2
(W)l 75 Pt (R). (5.1)

The standard dataset is shown in Fig. together with the theoretical

model. We then use the standard dataset to reconstruct the matter power
spectrum at large scales, following the procedure outlined in Chapter [4}

SPLC (k) =

Since we are observing a limited volume V, we can reconstruct the
power spectrum for k; modes that are spaced over Ak = (2r)/V'/3. There-
fore, the reconstruction allows to add to our dataset 9 data points whose er-

rors are given by the relations (4.20) and (4.18). The integration in (4.18))
1

has been performed in k, over the range k;,,y < ks < 0.20 h Mpc™ ", with:
- Joo2hMpe ', ifk <0.005 h Mpc! 5.2)
inf = 2k, otherwise '

to account for the squeezed limit ks > k;. The combination of the
standard dataset with the additional data points represents our “extended”
dataset. This is shown in Fig. [5.2; we can see that the reconstruction al-
lowed to get information about the power spectrum until large scales of
order O(10~%) that, otherwise, would have not been achieved.

'In our analysis we will neglect the shot noise: it is a good approximation for the scales
and z we are considering.
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104 J
g
£10%
£
102 i
10~ 1073 102 10-! 10
kTh Mpc™]

Figure 5.1: Light cone matter power spectrum with associated errors for the standard dataset.

¢  Extended
4 ¢ Standerd
10% 4
£
H‘S/ 103 J
=
A
102 p
104 10 102 107! 10°
k[h Mpc™

Figure 5.2: Light cone matter power spectrum with associated errors for the extended dataset:

the green errorbars refers to the reconstructed data.
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5.3 MCMC analysis

Once we reconstructed large scales matter power spectrum, we would like to
investigate if and how introducing information about large scales improves
our constraining power on cosmological parameters, in particular on ) m,,.
To do so, we develop a code executing a Monte Carlo Markov Chains
(MCMCQ) analysis on both datasets. We perform a statistical analysis in a
bayesian framework. We write a likelihood module run on Cobaya (code for
bayesian analysis) software [15] [51] [52].
Cobaya is a framework for sampling and statistical modelling which allows
to explore an arbitrary prior or posterior using an MC or MCMC sampler.
It provides interfaces to cosmological theory codes as CAMB, too. Cobaya
supports MPI parallelization. We exploit this feature to run our code on a
HPC cluster provided by CINECA [4].

Our first step is the choice of the likelihood function, i.e. the probability
of data given a model. In agreement with Ref. [49], a good choice is a
Gaussian likelihood in P (k). To keep things simple, we assume a diago-

nal covariance with elements given by Egs. (4.18)), (4.20), (5.1I).

The convergence for an MCMC run is achieved when R — 1 < 0.01 .
R-1 is a generalized Gelman-Rubin statistics verifying that all chains are
centered around the same point without deviations of significant fraction
of the standard deviation of the posterior [22] [30]. The results of the
sampling are analysed with GetDist [3]] [31]. We show the results in the
figures in this way:

¢ black lines refer to the standard dataset, while red lines to the ex-
tended;

¢ thin dashed blue lines show the reference values;

* the concentric lines in the triangle plot describe the probability con-
tours of 68% (internal line) and 95% (external line) confidence level
(CL).

In the code, we vary one or more parameters from Tab. We assume
either uniform or normal prior distribution in order to observe different
behaviours depending on the dataset we analysed.

Firstly, we take some exploratory tests, to check that our analysis is un-
biased, i.e., that we are able to recover the fiducial values. We verify it
varying > m,. As we can see from Fig. our analysis is unbiased, since
we recover »  m, = 0.06 eV with both datasets.
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—— standard
—— Extended

0.050 0.055 0.060 0.065
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Figure 5.3: Posterior probability distribution of > m, when varying only > m, with a uniform

prior.
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Figure 5.4: Posterior probability distributions when varying w.,ns and by with uniform priors.
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—— Standard
—— Extended
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Figure 5.5: Posterior probability distributions when varying w.,ns and As with uniform priors.

As we have already said in the Sec. varying two o more parame-
ters allows to counteract background effects from > m, lightening up the
perturbations ones. We expect some degeneracies between them: it is in-
teresting analysing if adding informations from large scales helps breaking
these degeneracies in order to separate the effects of parameters on the
matter power spectrum.

Firstly, we investigate what happens keeping > m, = 0.06 €V constant.
We start varying w. P} ns and by using a uniform prior (Fig. [5.4).

Later we substitute by with A, using a uniform prior (Fig. [5.5). Both in

Fig. [5.4] and [5.5| we can observe a regular behaviour in the posterior distri-
butions with little constraining improvements using the extended dataset.

2In all the figures, there is the label Q.h? instead of w..
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—— Standard
—— Extended

0.97 -

0.74

S 073}

2.2x107°

< 2.1x107°

T
|
T

2x107° F T

1 1 1 1 1 1 1 1 1
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Figure 5.6: Posterior probability distributions when varying we,ns, As and by with normal pri-
ors.

Keeping >  m, fixed, we vary w,,ns,As and by with normal priors (Fig.
5.6). In particular, the width of the prior for by is chosen following Ref.
[46]. In this case, we have just two degeneracies w. — ns and A — by which
share the same degeneracy direction: when the first parameter increases,
the second one decreases. This happens because, as we can see in Figs.
and Figs. each parameter pair shows the same effect on the
matter power spectrum.

In this case, the differences between the standard and the extended
datasets are negligible.
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P(k)[(h~ Mpc)?]

P(k)[(h~ Mpc)?]

50
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Figure 5.7: Extended dataset with theoretical models for increasing we.

— ng =0.8 —_— ng = 1.2
— ng = 0.96
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Figure 5.8: Extended dataset with theoretical models for increasing ns.
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Figure 5.9: Extended dataset with theoretical models for increasing bo.
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Figure 5.10: Extended dataset with theoretical models for increasing As.
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P(k)[(h~ Mpc)®]
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Figure 5.11: Extended dataset with theoretical models for increasing m.,.
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Figure 5.12: Posterior probability distributions when varying >, m,, and w. with uniform priors.
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Figure 5.13: Posterior probability distributions when varying m,, w. and ns with uniform
priors.

Now, let us introduce > m, as a variable parameter adding gradually
other parameters.

From both the triangle plots in Fig. and we can see the de-
generacy between w, and ), m,. As we can understand looking at Fig.
and > m, suppresses at small scales the matter power spectrum. The
latter increases with w,. at the same scales. Therefore, if > m, increases, w,.
has to decrease in order to keep the matter power spectrum constant.

On the contrary, as we can see by comparing Fig. and the
degeneracy ) m, — ns in Fig. happens because the matter power
spectrum is almost constant at large scale with respect to > m,, while at
the same scales the matter power spectrum strongly decreases with 7.

Looking at Fig. and we notice a mild improvement of the
2D contours when adding the extended dataset. This is due to the fact that
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5.3. MCMC ANALYSIS

the extended dataset helps to constrain the impact of the parameter both at
large and small scales.

—— Standard
—— Extended

N

NN

0.98 il K
0.96
2]
c
0.92 1 1
70 1 1
o 69 1 1
* /7
68

0.l 02 03 012 013 0.02 094096 098 67 68 69 70
Im, Qch? ns Ho

Figure 5.14: Posterior probability distributions when varying Y m,, we, ns and Ho with uni-
form priors.

We then vary Hy with a uniform prior. The triangle plot shows
the same degeneracies as in Fig. even though with slightly deformed
shapes due to the fact we add the new variable parameter Hy. We can see a
degeneracy 5" m, — Hy. As we can see in Fig. the matter power spec-
trum increases with Hy. Therefore, to compensate the suppression induced
by > m,, Hy increases with ) " m,,.

It is relevant to underline that, using the extended dataset, we can ap-
preciate a little improvement in the constraining power on w,, ns and Hj.
This is reasonable because, as we can see looking at Figs. and
they all affect the large scales.
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P(k)[(h™ Mpc)®]

T T T T
kTh Mpc™1

Figure 5.15: Extended dataset with theoretical models for increasing h. Throughout this section
we will use the dimensional Hubble-Lemaitre constant H instead of the dimensionless h.

Varying the bias by instead of Hj using a uniform prior produces the
interesting triangle plot in Fig. In this case we only have an upper
bound on ) m, and a very wide posterior on by. This is due to the very
strong degeneracy between ) m, and by. The degeneracy > m, — w, is
broken. The inversion of the degeneracy direction between > m, and n,
with respect to the triangle plot[5.13|is another interesting effects.

These behaviours are likely caused by the strong degeneracies by —» . m,,
and by —ns. We have seen above that increasing » ~ m, suppresses the power
spectrum; on the other hand, according to (3.20]), the matter power spec-
trum increases with by (see Fig. .

At the same time, at large scales the power spectrum strongly decreases
with n,. As a consequence, by increases with ng. These degeneracies cause
the inversion of the degeneracy direction between ) _ m,, and ns. The effects
we have described are also strong enough to destroy the degeneracies of w,
with Y m, and n;.

To summarize: adding the new parameter by changes the relations be-
tween the other parameters. This shows how important the research on bias
is. Its limited knowledge is one of the principal limits to improved sensitivity
and a major topic of theoretical studies [[17].
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—— Standard
—— Extended

0.125

0.120

Qch?

0.115

1.05

Ns

1.00

0.95

0.85

0.80

bo

0.75

T
L

T
L

T
L

T
L

02 04 0.6 0.8
zm,

0.115 0.120 0.125
Qch?

0.95 1.00 1.05 1.10
Ns

0.75

0.80
bo

Figure 5.16: Posterior probability distributions when varying > m., we, ns and by with uniform

priors.

In Fig. we vary by with a normal prior. In this way, the MCMC run is
able to recover the reference value of > m,, in particular for the extended
dataset. Furthermore, the by posterior distribution improves with respect to
the previous case. Since the gaussian prior prevents by from varying over a
wide range, we also notice that a small correlation between w. and ) m,
appears, contrary to the previous case.

In both the Fig. and we see that the extended dataset provides
a better constraining power on n, w.(as said before) and also by, due to the

fact that b is sensitive to the large scales (see Fig. [5.9).
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Figure 5.17: Posterior probability distributions when varying > m., w., ns with uniform priors
and by with normal prior.

It is interesting to analyse how the previous Fig. and change
in case of a normal prior for all the parameters. The width of the prior
distribution is chosen to resemble the constraining power from CMB data

(e.g., Planck [6]).
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—— Standard

/\ Extended
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Figure 5.18: Posterior probability distributions when varying > m., we, ns and by with normal
priors.

If we vary by, Y m,, w. and ns we obtain the triangle plot which
is similar to Fig. [5.17] apart from the fact that the improvements obtained
using the extended dataset are almost negligible, for this set of parameters.
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Figure 5.19: Posterior probability distributions when varying > m., we, ns and by with normal
priors.

If we vary Hy, > m,, w. and ng, with respect to Fig. [5.14} in the triangle
plot

» we recover the reference value for the ng posterior distribution;
* we break the > m, — ns, and Hy — ns degeneracies;

* the improvements obtained using the extended dataset are mild.
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Figure 5.20: Posterior probability distributions when varying > m,, we,ns and A, with uni-
form priors.

We now focus on what happens when we vary also the A, parameter.
We start varying Y m,, we,ns and A, with uniform priors (Fig. [5.20).

First of all, it is important to focus on the degeneracies. Immediately
we can see a really strong A; — > m, degeneracy: even in this case it is
a compensation effect between the neutrino suppression and the increase
of the matter power spectrum with A (see Fig. [5.10). Similarly, we can
explain the n, — A5 degeneracy as a compensation effect at large scales.

These degeneracies are so strong to invert the direction of degeneracy
> m, —ns and destroying the degeneracies w. — Y . m, and ns; — w. we have
seen in and

Let us underline that we have already seen analogue characteristics in
the triangle plot[5.16|of by: both of them show similar 2D contours.

This is in agreement with the degeneracy between A, and by, we observed
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in Fig.

In the triangle plot we can also appreciate a big improvement in
the constraining power for almost all the distributions when we use the
extended dataset: the inclusion of the large scales helps to better constrain
A, and, in turn, the other degenerate parameters.

Comparing the Fig. and with the triangle plots and
highlights that assuming » _ m, variable causes some distortions in the pos-
terior distributions and removes also the degeneracies by — w,, As — w. and
ns — we. Furthermore, it is evident that adding information from large scale,
i.e. using the extended dataset, is helpful in constraining the cosmological
parameters when we assume ) | m,, not fixed.

To conclude, we have shown that the use of the extended dataset can,
in some cases, improve the constraints on cosmological parameters. De-
pending on the set of varying parameters and on their prior knowledge,
the improvement can be mild. Nevertheless, we have demonstrated that
the inclusion of information about large scale is particularly useful to con-
strain those parameters that are mostly degenerate with » m, and affect
the shape of the matter power spectrum at all scales, i.e. , A; and bg.
Larger improvements are expected if more extended cosmological models
are considered, and/or a more complex expression for the bias is used (for
example, a scale-dependent bias). The work presented in this thesis sets the
basis for future studies in this direction.
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Conclusions

In this thesis we have realized a complete pipeline to study the impact of
the addition of information about large scale modes of the matter power
spectrum on cosmological constraints. We have reviewed the theoretical
background about cosmological perturbations and developed the formalism
of large scale structure reconstruction. We proceeded in this way:

1. study of the formalism of large-scale reconstruction;

2. development of a computational tool for the reconstruction of large
scales from the small scale observable matter power spectrum;

3. simulation of performances on synthetic data from a future survey;
4. application to a cosmological model;

5. realization of a code for an MCMC bayesian analysis run on a HPC
cluster;

6. analysis and study of the MCMC results.

We applied this pipeline to the simple case of the ACDM+ > m, model
using the Euclid survey as a toy model. We have seen that, for this model, in-
cluding information about large scale is particularly useful to constrain those
parameters that are mostly degenerate with > m, and affect the shape of
the matter power spectrum at all scales, i.e. , the amplitude of the primor-
dial matter power spectrum A and the galaxy bias by.

Despite being very simple, the present work sets the basis for immediate
extensions. For example:

* addition of redshift space distortions effects, combination with other
cosmological datasets (e.g. CMB [|10]]), study of extended cosmologi-
cal models (e.g. with dynamical dark energy [|58] or curvature €2, # 0
[55]) and more complex expressions for the bias [17]];

¢ calculation of more realistic data covariance and more refined likeli-
hood function;
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5.3. MCMC ANALYSIS

* application to N-body simulations for testing the reconstruction on
more realistic synthetic datasets [[33]] [32]].

Finally, it could be interesting also to go to higher order in perturbation
theory for the matter perturbations to achieve higher order corrections of
our results.

To conclude, through our simple and self-contained pipeline, we have
shown that is worth exploring the potential of the large-scale reconstruction
method to study cosmologies beyond the standard ACDM.
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